Publications

In this thesis we study the computer vision problem of 3D object detection, in which objects should be detected from various sensor data and their position in the 3D world should be estimated. We also study the application of Generative Adversarial Networks in domain adaptation techniques, aiming to improve the 3D object detection model’s ability to transfer between different domains.
Master of Science Thesis in Electrical Engineering, 2018

Projects

Semantic Segmentation for Autonomous Driving.

Website Aiming to Increase Interest in Higher Education Among Youths.

Autonomous/Web Controlled TurtleBot3.

Autonomous Minesweeping System.

TensorFlow Implementation of SqueezeDet.

Autonomous/Web Controlled RC Car.

Deep Learning Demo/Test Platform.

The SE-Sync Algorithm for Pose-Graph SLAM.

Neural Image Captioning for Intelligent Vehicle-to-Passenger Communication.

Control of an Inverted Double Pendulum using Reinforcement Learning.

Web Tool for Analysis and Visualization of Sensor Data.

Autonomous/Web Controlled Raspberry Pi & Arduino Robot.

2D Adventure Game.

Teaching

Uppsala University

Linköping University

Coursework

Uppsala University

Stanford University

  • CS 229 | Machine Learning | 3 Units
  • EE 263 | Introduction to Linear Dynamical Systems | 3 Units
  • EE 278 | Introduction to Statistical Signal Processing | 3 Units
  • EE 310 | Ubiquitous Sensing, Computing and Communication Seminar | 1 Unit
  • AA 274 | Principles of Robotic Autonomy | 3 Units
  • CS 224N | Natural Language Processing with Deep Learning | 3 Units
  • EE 373A | Adaptive Signal Processing | 3 Units
  • EE 203 | The Entrepreneurial Engineer | 1 Unit
  • AA 203 | Introduction to Optimal Control and Dynamic Optimization | 3 Units
  • AA 273 | State Estimation and Filtering for Aerospace Systems | 3 Units
  • CS 547 | Human-Computer Interaction Seminar | 1 Unit
  • EE 380 | Colloquium on Computer Systems | 1 Unit
  • MS&E 472 | Entrepreneurial Thought Leaders’ Seminar | 1 Unit

Linköping University

  • TSEA51 | Switching Theory and Logical Design | 4 Credits
  • TATM79 | Foundation Course in Mathematics | 6 Credits
  • TFYY51 | Engineering Project | 6 Credits
  • TATA24 | Linear Algebra | 8 Credits
  • TATA41 | Calculus in One Variable 1 | 6 Credits
  • TATA42 | Calculus in One Variable 2 | 6 Credits
  • TATA40 | Perspectives on Mathematics | 1 Credit
  • TATA14 | The Language of Mathematics | 4 Credits
  • TFYA10 | Wave Motion | 8 Credits
  • TFFM12 | Perspectives on Physics | 2 Credits
  • TATA43 | Calculus in Several Variables | 8 Credits
  • TDDC74 | Programming: Abstraction and Modelling | 8 Credits
  • TSRT04 | Introduction in Matlab | 2 Credits
  • TATA44 | Vector Analysis | 4 Credits
  • TANA21 | Scientific Computing | 6 Credits
  • TSTE05 | Electronics and Measurement Technology | 8 Credits
  • TATA34 | Real Analysis, Honours Course | 6 Credits
  • TMME12 | Engineering Mechanics Y | 4 Credits
  • TATA45 | Complex Analysis | 6 Credits
  • TMME04 | Engineering Mechanics II | 6 Credits
  • TAOP07 | Introduction to Optimization | 6 Credits
  • TATA53 | Linear Algebra, Honours Course | 6 Credits
  • TAMS14 | Probability, First Course | 4 Credits
  • TSEA28 | Computer Hardware and Architecture Y | 6 Credits
  • TFYA13 | Electromagnetic Field Theory | 8 Credits
  • TATA77 | Fourier Analysis | 6 Credits
  • TAMS24 | Statistics, First Course | 4 Credits
  • TSDT18 | Signals and Systems | 6 Credits
  • TFYA12 | Thermodynamics and Statistical Mechanics | 6 Credits
  • TATM85 | Functional Analysis | 6 Credits
  • TDDC76 | Programming and Data Structures | 8 Credits
  • TSRT12 | Automatic Control Y | 6 Credits
  • TFYA73 | Modern Physics I | 4 Credits
  • TSEA56 | Electronics Engineering - Bachelor Project | 16 Credits
  • TATA66 | Fourier and Wavelet Analysis | 6 Credits
  • TSKS10 | Signals, Information and Communication | 4 Credits
  • TEAE01 | Industrial Economics, Basic Course | 6 Credits
  • TSRT62 | Modelling and Simulation | 6 Credits
  • TSRT10 | Automatic Control - Project Course | 12 Credits
  • TGTU49 | History of Technology | 6 Credits
  • TSEA81 | Computer Engineering and Real-time Systems | 6 Credits
  • TQET33 | Degree Project - Master’s Thesis | 30 Credits

Reading

I categorize and post comments on all research papers I read, and share this publicly on GitHub. Feel free to reach out with any questions or suggested readings, I am always interested in learning about new methods and ideas.