

UPPSALA UNIVERSITET

Accurate 3D Object Detection using Energy-Based Models

Fredrik K. Gustafsson¹, Martin Danelljan², Thomas B. Schön¹

¹Department of Information Technology, Uppsala University, Sweden ²Computer Vision Lab, ETH Zürich, Switzerland

Overview

- ▶ We extend energy-based regression from 2D to 3D object detection.
- This is achieved by integrating a conditional energy-based model (EBM) $p(y|x;\theta) = e^{f_{\theta}(x,y)} / \int e^{f_{\theta}(x,\tilde{y})} d\tilde{y}$ into the state-of-the-art 3D object detector SA-SSD.
- \blacktriangleright We design a differentiable pooling operator that, given a 3D bounding box y, extracts a feature vector from the SA-SSD output. This feature vector is then processed by fully-connected layers, outputting the scalar energy $f_{\theta}(x, y) \in \mathbb{R}$.

Results on KITTI

TABLE II

RESULTS ON KITTI VAL IN TERMS OF 3D AND BEV AP.

	Easy	3D @ 0.7 Moderate	Hard	BEV @ 0.7 Fasy Moderate Hard				
SA-SSD [24]	93.23	84.30	81.36	-	-	-		
PV-RCNN [3]	92.78	85.94	83.25	93.48	91.98	89.48		
	92.57	84.83	82.69	95.76	91.11	88.93		
SA-SSD	93.14	84.65	81.86	96.56	92.84	90.36		
S A-SSD+EBM	95.45	86.83	82.23	96.60	92.92	90.43		
Rel. Improvement	+2.48%	+2.58%	+0.45%	+0.04%	+0.09%	+0.08%		

TABLE III

ARISON OF OUR PROPOSED DETECTOR AND THE SA-SSD BASELINE ON KITTI VAL

	Easy	3D @ 0.75 Moderate	Hard	Easy	3D @ 0.8 Moderate	Hard	Easy	3D @ 0.85 Moderate	Hard	Easy	3D @ 0.9 Moderate	Hard
SA-SSD SA-SSD+EBM Rel. Improvement	84.48 87.85 +3.99%	73.91 74.96 +1.42%	70.99 71.95 +1.35%	60.89 66.70 +9.54%	50.08 54.32 +8.47%	47.37 51.36 +8.42%	24.29 31.02 +27.7%	19.58 23.91 +22.1%	18.05 21.95 +21.6%	2.06 3.45 +67.5%	1.58 2.74 +73.4%	1.33 2.26 +69.9%
	Easy	BEV @ 0.75 Moderate	5 Hard	Easy	BEV @ 0.8 Moderate	Hard	Easy	BEV @ 0.85 Moderate	Hard	Easy	BEV @ 0.9 Moderate	Hard

Energy-Based Regression

Train a neural network $f_{\theta} : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ to predict a scalar value $f_{\theta}(x, y) \in \mathbb{R}$, then model the distribution p(y|x) with the conditional EBM $p(y|x;\theta)$:

$$p(y|x;\theta) = rac{e^{f_{ heta}(x,y)}}{Z(x,\theta)}, \quad Z(x,\theta) = \int e^{f_{ heta}(x, ilde{y})} d ilde{y}.$$

Energy-Based Regression - Prediction

Predict the most likely target under the model given an input x^* , i.e. $y^{\star} = \arg \max_{v} p(y|x^{\star};\theta) = \arg \max_{v} f_{\theta}(x^{\star},y)$. In practice, $y^{\star} = \arg \max_{v} f_{\theta}(x^{\star},y)$ is approximated by refining an initial estimate \hat{y} via T steps of gradient ascent,

Analysis of Inference Speed

$y \leftarrow y + \lambda \nabla_{\mathbf{y}} f_{\theta}(\mathbf{x}^{\star}, \mathbf{y}).$

Energy-Based Regression - Training using NCE

The neural network $f_{\theta}(x, y)$ is trained by minimizing the loss $J(\theta) = -\frac{1}{N} \sum_{i=1}^{N} J_i(\theta)$, $J_{i}(\theta) = \log \frac{\exp\{f_{\theta}(x_{i}, y_{i}^{(0)}) - \log q(y_{i}^{(0)}|y_{i})\}}{\sum_{m=0}^{M} \exp\{f_{\theta}(x_{i}, y_{i}^{(m)}) - \log q(y_{i}^{(m)}|y_{i})\}},$

where $y_i^{(0)} \triangleq y_i$, and $\{y_i^{(m)}\}_{m=1}^M$ are M samples drawn from a noise distribution $q(y|y_i)$ that depends on the true target y_i , $q(y|y_i) = \frac{1}{K} \sum_{k=1}^{K} \mathcal{N}(y;y_i,\sigma_k^2 I)$.

• Effectively, $J(\theta)$ is the softmax cross-entropy loss for a classification problem with M + 1 classes (which of the M + 1 values $\{y_i^{(m)}\}_{m=0}^M$ is the true target y_i ?).

Differentiable Pooling of 3D Bounding Boxes

- The BEV version y^{BEV} of the 3D bounding box y is pooled with the BEV feature map produced by SA-SSD, extracting a feature vector.
- The z coordinate c_z and height h of the 3D bounding box y are processed by two

Fig. 5. Impact of the number of gradient ascent iterations T on detector performance (3D AP with 0.7 threshold, averaged over easy, moderate and hard) and detector inference speed (FPS), on KITTI val.

Analysis of Learned Distribution

Fig. 6. Visualization of the DNN scalar output $f_{\theta}(x, y)$ when a predicted 3D bounding box y (6) is rotated $\Delta \phi$ rad, demonstrating that the trained EBM $p(y|x;\theta)$ captures the inherent multi-modality in p(y|x).

small fully-connected layers, extracting a feature vector each.

► Finally, all three feature vectors are concatenated.

Conclusion

- We applied conditional EBMs $p(y|x; \theta)$ to the task of 3D bounding box regression, thus extending the recent energy-based regression approach from 2D to 3D object detection. On the KITTI dataset, our approach consistently outperformed the SA-SSD baseline across all 3DOD metrics, and achieved highly competitive performance also compared to other state-of-the-art methods.
- ► By demonstrating the potential of energy-based regression for highly accurate 3DOD, we hope that our work will encourage the research community to further explore the application of EBMs $p(y|x;\theta) = e^{f_{\theta}(x,y)} / \int e^{f_{\theta}(x,\tilde{y})} d\tilde{y}$ to 3DOD and other important regression tasks.