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1. Energy-Based Models

Energy-based models [12] have a rich history within machine learning [19, 14, 9, 17].

An energy-based model (EBM) specifies a probability distribution p(x ; θ) over

x ∈ X directly via a parameterized scalar function fθ : X → R:

p(x ; θ) =
efθ(x)

Z (θ)
, Z (θ) =

∫
efθ(x̃)dx̃

By defining fθ(x) using a deep neural network (DNN), p(x ; θ) becomes expressive

enough to learn practically any distribution from observed data.

EBMs have therefore become increasingly popular within computer vision in recent

years, commonly being applied for various generative image modeling tasks

[20, 3, 16, 2, 5, 15, 4, 18, 1].
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1. Energy-Based Models

An EBM specifies a probability distribution p(x ; θ) directly via a parameterized

scalar function fθ(x),

p(x ; θ) =
efθ(x)

Z (θ)
, Z (θ) =

∫
efθ(x̃)dx̃ ,

where fθ(x) commonly is defined using a DNN.

The EBM p(x ; θ) = efθ(x)/
∫
efθ(x̃)dx̃ is thus a highly expressive model that puts

minimal restricting assumptions on the true distribution p(x).

Drawback: the normalizing partition function Z (θ) =
∫
efθ(x̃)dx̃ is intractable, which

complicates evaluating or sampling from p(x ; θ).

(Compare with normalizing flows which are easy to both evaluate and sample, but

impose a specific structure on p(x). EBMs instead prioritize maximum expressivity.)
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1. Energy-Based Models

The definition of an EBM p(x ; θ),

p(x ; θ) =
efθ(x)

Z (θ)
, Z (θ) =

∫
efθ(x̃)dx̃ ,

includes the intractable Z (θ) =
∫
efθ(x̃)dx̃ .

This complicates evaluating or sampling from p(x ; θ).

In particular, EBMs are challenging to train. A variety of different approaches have

therefore been explored in literature.

A very recent tutorial on the subject:

How to Train Your Energy-Based Models
Yang Song, Diederik P. Kingma

arXiv:2101.03288
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2. Energy-Based Models for Regression

While EBMs recently had become increasingly popular within computer vision, they

were basically only being employed for generative image modeling.

In Energy-Based Models for Deep Probabilistic Regression, we instead explored

the application of EBMs to various regression problems (age estimation, head-pose

estimation, 2D bounding box regression).

Regression: learn to predict a continuous target y? ∈ Y = RK from a cor-

responding input x? ∈ X , given a training set D of i.i.d. input-target pairs,

D = {(xi , yi )}Ni=1, (xi , yi ) ∼ p(x , y).
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2. Energy-Based Models for Regression

We addressed this task by modelling the distribution p(y |x) with a conditional EBM:

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .

Here, fθ : X × Y → R is a DNN that maps any input-target pair (x , y) ∈ X × Y
directly to a scalar fθ(x , y) ∈ R, and Z (x , θ) is the input-dependent partition function.
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2. Energy-Based Models for Regression

EBMs for Regression: train a DNN fθ : X × Y → R to predict a scalar value

fθ(x , y), then model p(y |x) with the conditional EBM p(y |x ; θ):

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .

The EBM p(y |x ; θ) can learn complex target distributions directly from data:
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2. Energy-Based Models for Regression - Prediction

EBMs for Regression: train a DNN fθ : X × Y → R to predict a scalar value

fθ(x , y), then model p(y |x) with the conditional EBM p(y |x ; θ):

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .

Given an input x? at test time, we predict the target y? by maximizing p(y |x?; θ):

y? = argmax
y

p(y |x?; θ) = argmax
y

fθ(x?, y)

In practice, y? = argmaxy fθ(x?, y) is approximated by refining an initial estimate ŷ via

T steps of gradient ascent,
y ← y + λ∇y fθ(x?, y),

thus finding a local maximum of fθ(x?, y). Evaluation of the partition function

Z (x?, θ) is therefore not required.
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2. Energy-Based Models for Regression - Prediction
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2. Energy-Based Models for Regression - Training

EBMs for Regression: train a DNN fθ : X × Y → R to predict a scalar value

fθ(x , y), then model p(y |x) with the conditional EBM p(y |x ; θ):

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .

The DNN fθ(x , y) can be trained using various methods for fitting a density p(y |x ; θ)

to observed data {(xi , yi )}Ni=1.

Generally, the most straightforward such method is probably to minimize the negative

log-likelihood L(θ) = −
∑N

i=1 log p(yi |xi ; θ), which for the EBM p(y |x ; θ) is given by,

L(θ) =
N∑
i=1

log

(∫
efθ(xi ,y)dy

)
− fθ(xi , yi ).
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2. Energy-Based Models for Regression - Training

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .

L(θ) = −
N∑
i=1

log p(yi |xi ; θ) =
N∑
i=1

log

(∫
efθ(xi ,y)dy

)
− fθ(xi , yi ).

The integral
∫
efθ(xi ,y)dy is however intractable, preventing exact evaluation of L(θ).

In Energy-Based Models for Deep Probabilistic Regression, we simply

approximated this intractable integral using importance sampling.
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2. Energy-Based Models for Regression - Training

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =
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efθ(x ,ỹ)dỹ .

L(θ) = −
N∑
i=1

log p(yi |xi ; θ) =
N∑
i=1

log

(∫
efθ(xi ,y)dy

)
− fθ(xi , yi ).

Importance sampling:

− log p(yi |xi ; θ) = log

(∫
efθ(xi ,y)dy

)
− fθ(xi , yi )

= log

(∫
efθ(xi ,y)

q(y)
q(y)dy

)
− fθ(xi , yi )

≈ log

(
1

M

M∑
k=1

efθ(xi ,y
(k))

q(y (k))

)
− fθ(xi , yi ), y (k) ∼ q(y).
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2. Energy-Based Models for Regression - Training

EBMs for Regression: train a DNN fθ : X × Y → R to predict a scalar value

fθ(x , y), then model p(y |x) with the conditional EBM p(y |x ; θ):

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .

Various alternative techniques could however also be employed to train the DNN

fθ(x , y), including noise contrastive estimation (NCE) [6, 13] and score matching [10].

In How to Train Your Energy-Based Model for Regression, we therefore studied in

detail how EBMs should be trained specifically for regression problems.

We compared six methods on the task of 2D bounding box regression, and concluded

that a simple extension of NCE should be considered the go-to training method.

17/38



2. Energy-Based Models for Regression - Training

EBMs for Regression: train a DNN fθ : X × Y → R to predict a scalar value

fθ(x , y), then model p(y |x) with the conditional EBM p(y |x ; θ):

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .
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2. Energy-Based Models for Regression - Training using NCE

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .

Noise contrastive estimation (NCE) entails learning to discriminate between observed

data examples and samples drawn from a noise distribution.

Specifically, the DNN fθ(x , y) is trained by minimizing the loss J(θ) = − 1
N

∑N
i=1 Ji (θ),

Ji (θ)=log
exp
{
fθ(xi , y

(0)
i )−log q(y

(0)
i |yi )

}
M∑

m=0
exp
{
fθ(xi , y

(m)
i )−log q(y

(m)
i |yi )

} ,
where y

(0)
i , yi , and {y (m)

i }Mm=1 are M samples drawn from a noise distribution q(y |yi )
that depends on the true target yi .

18/38
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2. Energy-Based Models for Regression - Training using NCE

J(θ) = − 1

N

N∑
i=1

Ji (θ), Ji (θ)=log
exp
{
fθ(xi , y

(0)
i )−log q(y

(0)
i |yi )

}
M∑

m=0
exp
{
fθ(xi , y

(m)
i )−log q(y

(m)
i |yi )

} ,
y

(0)
i , yi , {y (m)

i }Mm=1 ∼ q(y |yi ) (noise distribution).

Effectively, J(θ) is the softmax cross-entropy loss for a classification problem with

M + 1 classes (which of the M + 1 values {y (m)
i }Mm=0 is the true target yi?).

A simple yet effective choice for the noise distribution q(y |yi ) is a mixture of K

Gaussians centered at yi ,
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2. Energy-Based Models for Regression

3. Energy-Based Models for 3D Object Detection
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3. Energy-Based Models for 3D Object Detection

In Accurate 3D Object Detection using Energy-Based Models, we extend our

energy-based regression approach from 2D to 3D bounding box regression.

This is achieved by designing a differentiable pooling operator for 3D bounding boxes

y , and adding an extra network branch to the state-of-the-art 3D object detector

SA-SSD [7].

We evaluate our proposed detector on the KITTI dataset and consistently outperform

the SA-SSD baseline detector across all 3D object detection (3DOD) metrics.
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3. Energy-Based Models for 3D Object Detection

SA-SSD Pool f(x,y)

y
x

We integrate a conditional EBM p(y |x ; θ) = efθ(x ,y)/
∫
efθ(x ,ỹ)dỹ into the SA-SSD 3D

object detector.

We design a differentiable pooling operator that, given a 3D bounding box y , extracts

a feature vector from the SA-SSD output. This feature vector is processed by

fully-connected layers, outputting fθ(x , y) ∈ R.
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3. Energy-Based Models for 3D Object Detection

SA-SSD Pool f(x,y)

y
x

The differentiable pooling operator is required when using gradient ascent to maximize

the EBM p(y |x ; θ) at test-time, as this requires the scalar DNN output fθ(x , y) to be

differentiable w.r.t. the 3D bounding box y .

For 2D bounding boxes, this was achieved by applying a pooling operator [11] on

image features, but this technique is not directly applicable to 3D bounding boxes.
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3. Energy-Based Models for 3D Object Detection - Pooling

h

c

BEV Feature Map

RoIAlign

z

The BEV version yBEV of the 3D bounding box y is pooled with the BEV feature map

produced by SA-SSD, extracting a feature vector. Since yBEV is an oriented 2D box

and not necessarily axis-aligned, we here employ a modified variant of RoIAlign [8].
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3. Energy-Based Models for 3D Object Detection - Pooling

h

c

BEV Feature Map

RoIAlign

z

The z coordinate cz and height h of the 3D bounding box y are processed by two

small fully-connected layers, extracting a feature vector each. Finally, all three feature

vectors are concatenated.
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3. Energy-Based Models for 3DOD - Detector Training

The extra fully-connected layers are added onto a pre-trained and fixed SA-SSD

detector. The parameters θ in fθ(x , y) thus only stem from these added

fully-connected layers, and the SA-SSD backbone and detection networks are kept

fixed during training of the DNN fθ.

To train fθ, we use NCE as previously described. We employ the same training

parameters (batch size, data augmentation etc.) as for SA-SSD, only replacing the

original detector loss with the NCE loss.
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3. Energy-Based Models for 3DOD - Detector Inference

At test-time, the input LiDAR point cloud x? is first processed by the SA-SSD

detector. SA-SSD outputs a set {(ŷi , si )}Di=1 of D detections, where ŷi is a 3D

bounding box and si is the associated classification confidence score.

We then take all bounding boxes {ŷi}Di=1 as initial estimates and refine these via T

steps of gradient ascent, producing {yi}Di=1. The initial 3D bounding boxes {ŷi}Di=1 are

thus refined by being moved toward different local maxima of fθ(x?, y).

The refined boxes {yi}Di=1 are finally combined with the original confidence scores,

returning the detections {(yi , si )}Di=1.
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thus refined by being moved toward different local maxima of fθ(x?, y).

The refined boxes {yi}Di=1 are finally combined with the original confidence scores,

returning the detections {(yi , si )}Di=1.

29/38



3. Energy-Based Models for 3DOD - Detector Inference

30/38



3. Energy-Based Models for 3DOD - Results
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3. Energy-Based Models for 3DOD - Analysis of Inference Speed

34/38



3. Energy-Based Models for 3DOD - Analysis of Learned Distribution
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