Deep Energy-Based NARX Models

Johannes N. Hendriks ${ }^{1}$, Fredrik K. Gustafsson ${ }^{2}$, Antônio H. Ribeiro ${ }^{2}$, Adrian G. Wills ${ }^{1}$, Thomas B. Schön ${ }^{2}$
${ }^{1}$ School of Engineering, The University of Newcastle, Australia
${ }^{2}$ Department of Information Technology, Uppsala University, Sweden

The 19th IFAC Symposium on System Identification (SYSID 2021)

Introduction

We consider the problem of learning models for dynamic systems based on observed input-output data $\left\{\left(u_{t}, y_{t}\right)\right\}_{t=1}^{T}$.

Specifically, we assume that the current system output y_{t} is related to past outputs and past inputs $x_{t} \triangleq\left\{y_{t-1}, \ldots, y_{t-D_{y}}, u_{t-1}, \ldots, u_{t-D_{u}}\right\}$.

A common approach is to directly regress y_{t} from x_{t}, using a neural network f_{θ} that is trained by minimizing the mean squared error (MSE),

$$
\begin{gathered}
\hat{y}_{t}=f_{\hat{\theta}}\left(x_{t}\right), \\
\hat{\theta}=\underset{\theta}{\operatorname{argmin}} \frac{1}{T} \sum_{t=1}^{T}\left\|y_{t}-f_{\theta}\left(x_{t}\right)\right\|^{2}
\end{gathered}
$$

Introduction

From a probabilistic perspective, this MSE approach corresponds to minimizing the negative log-likelihood $-\sum_{t=1}^{T} \log p_{\theta}\left(y_{t} \mid x_{t}\right)$ for a fixed-variance Gaussian model $p_{\theta}\left(y_{t} \mid x_{t}\right)=\mathcal{N}\left(y ; f_{\theta}\left(x_{t}\right), \sigma^{2}\right)$ of the conditional distribution $p\left(y_{t} \mid x_{t}\right)$.

A fixed-variance, unimodal Gaussian model $p_{\theta}\left(y_{t} \mid x_{t}\right)=\mathcal{N}\left(y ; f_{\theta}\left(x_{t}\right), \sigma^{2}\right)$ is however fairly restrictive, and could give a poor approximation of the true distribution $p\left(y_{t} \mid x_{t}\right)$ in many practical situations.

In this paper, we instead utilize highly flexible energy-based models $p_{\theta}\left(y_{t} \mid x_{t}\right)$, enabling $p\left(y_{t} \mid x_{t}\right)$ to be learned directly from the available data.

Energy-Based NARX Models

We model the distribution $p\left(y_{t} \mid x_{t}\right)$ with a conditional energy-based model (EBM),

$$
\begin{equation*}
p_{\theta}\left(y_{t} \mid x_{t}\right)=\frac{e^{g_{\theta}\left(y_{t}, x_{t}\right)}}{\int e^{g_{\theta}\left(\gamma, x_{t}\right)} \mathrm{d} \gamma}, \tag{1}
\end{equation*}
$$

where g_{θ} is a neural network that maps any pair $\left(y_{t}, x_{t}\right)$ to a scalar $g_{\theta}\left(y_{t}, x_{t}\right) \in \mathbb{R}$.

The EBM $p_{\theta}\left(y_{t} \mid x_{t}\right)$ is directly specified via the neural network g_{θ}, which provides a highly flexible class of functions. This enables $p_{\theta}\left(y_{t} \mid x_{t}\right)$ to model a wide range of distributions, including heavy-tailed, asymmetric or multimodal ones.

Since $p_{\theta}\left(y_{t} \mid x_{t}\right)$ in (1) is an EBM that relies on a nonlinear combination of past outputs and inputs x_{t}, we refer to this as an energy-based NARX (EB-NARX) model.

Energy-Based NARX Models - Training

We model the distribution $p\left(y_{t} \mid x_{t}\right)$ with a conditional energy-based model (EBM),

$$
p_{\theta}\left(y_{t} \mid x_{t}\right)=\frac{e^{g_{\theta}\left(y_{t}, x_{t}\right)}}{\int e^{g_{\theta}\left(\gamma, x_{t}\right)} \mathrm{d} \gamma},
$$

where g_{θ} is a neural network that maps any pair $\left(y_{t}, x_{t}\right)$ to a scalar $g_{\theta}\left(y_{t}, x_{t}\right) \in \mathbb{R}$.

The neural network $g_{\theta}\left(y_{t}, x_{t}\right)$ can be trained using various methods for fitting a density $p_{\theta}\left(y_{t} \mid x_{t}\right)$ to observed data $\left\{\left(y_{t}, x_{t}\right)\right\}_{t=1}^{T}$.

Generally, the most straightforward such method is probably to minimize the negative log-likelihood $\mathcal{L}(\theta)=-\sum_{t=1}^{T} \log p_{\theta}\left(y_{t} \mid x_{t}\right)$, which for the EBM $p_{\theta}\left(y_{t} \mid x_{t}\right)$ is given by,

$$
\mathcal{L}(\theta)=\sum_{t=1}^{T} \log \left(\int e^{g_{\theta}\left(\gamma, x_{t}\right)} \mathrm{d} \gamma\right)-g_{\theta}\left(y_{t}, x_{t}\right)
$$

Energy-Based NARX Models - Training

We model the distribution $p\left(y_{t} \mid x_{t}\right)$ with a conditional energy-based model (EBM),

$$
p_{\theta}\left(y_{t} \mid x_{t}\right)=\frac{e^{g_{\theta}\left(y_{t}, x_{t}\right)}}{\int e^{g_{\theta}\left(\gamma, x_{t}\right)} \mathrm{d} \gamma},
$$

where g_{θ} is a neural network that maps any pair $\left(y_{t}, x_{t}\right)$ to a scalar $g_{\theta}\left(y_{t}, x_{t}\right) \in \mathbb{R}$.

The integral $\int e^{g_{\theta}\left(\gamma, x_{t}\right)} \mathrm{d} \gamma$ is generally intractable, preventing exact evaluation of $\mathcal{L}(\theta)$, but can be approximated using numerical integration techniques.

We instead employ noise contrastive estimation (NCE) to train $g_{\theta}\left(y_{t}, x_{t}\right)$.

Energy-Based NARX Models - Training using NCE

$$
p_{\theta}\left(y_{t} \mid x_{t}\right)=\frac{e^{g_{\theta}\left(y_{t}, x_{t}\right)}}{\int e^{g_{\theta}\left(\gamma, x_{t}\right)} \mathrm{d} \gamma}
$$

Noise contrastive estimation (NCE) entails learning to discriminate between observed data examples and samples drawn from a noise distribution.

Specifically, $g_{\theta}\left(y_{t}, x_{t}\right)$ is trained by minimizing the cost function $L(\theta)=-\frac{1}{T} \sum_{t=1}^{T} L_{t}(\theta)$,

$$
L_{t}(\theta)=\log \frac{\exp \left(g_{\theta}\left(y_{t}^{(0)}, x_{t}\right)-\log q\left(y_{t}^{(0)} \mid y_{t}\right)\right)}{\sum_{m=0}^{M} \exp \left(g_{\theta}\left(y_{t}^{(m)}, x_{t}\right)-\log q\left(y_{t}^{(m)} \mid y_{t}\right)\right)}
$$

where $y_{t}^{(0)} \triangleq y_{t}$, and $\left\{y_{t}^{(m)}\right\}_{m=1}^{M}$ are M samples drawn from a noise distribution $q\left(y \mid y_{t}\right)$ that depends on the true output y_{t}.

Energy-Based NARX Models - Training using NCE

$$
\begin{gathered}
L(\theta)=-\frac{1}{T} \sum_{t=1}^{T} L_{t}(\theta), \quad L_{t}(\theta)=\log \frac{\exp \left(g_{\theta}\left(y_{t}^{(0)}, x_{t}\right)-\log q\left(y_{t}^{(0)} \mid y_{t}\right)\right)}{\sum_{m=0}^{M} \exp \left(g_{\theta}\left(y_{t}^{(m)}, x_{t}\right)-\log q\left(y_{t}^{(m)} \mid y_{t}\right)\right)}, \\
y_{t}^{(0)} \triangleq y_{t}, \quad\left\{y_{t}^{(m)}\right\}_{m=1}^{M} \sim q\left(y \mid y_{t}\right) \text { (noise distribution). }
\end{gathered}
$$

Effectively, $L(\theta)$ is the softmax cross-entropy loss for a classification problem with $M+1$ classes (which of the $M+1$ values $\left\{y_{t}^{(m)}\right\}_{m=0}^{M}$ is the true output y_{t} ?).

The noise distribution $q\left(y \mid y_{t}\right)$ is a mixture of K Gaussians centered at y_{t},

$$
q\left(y \mid y_{t}\right)=\frac{1}{K} \sum_{k=1}^{K} \mathcal{N}\left(y ; y_{t}, \sigma_{k}^{2} I\right) .
$$

Energy-Based NARX Models - Training using NCE

$$
L(\theta)=-\frac{1}{T} \sum_{t=1}^{T} L_{t}(\theta), \quad L_{t}(\theta)=\log \frac{\exp \left(g_{\theta}\left(y_{t}^{(0)}, x_{t}\right)-\log q\left(y_{t}^{(0)} \mid y_{t}\right)\right)}{\sum_{m=0}^{M} \exp \left(g_{\theta}\left(y_{t}^{(m)}, x_{t}\right)-\log q\left(y_{t}^{(m)} \mid y_{t}\right)\right)},
$$

$$
y_{t}^{(0)} \triangleq y_{t}, \quad\left\{y_{t}^{(m)}\right\}_{m=1}^{M} \sim q\left(y \mid y_{t}\right) \text { (noise distribution). }
$$

Energy-Based NARX Models - Prediction

We model the distribution $p\left(y_{t} \mid x_{t}\right)$ with a conditional energy-based model (EBM),

$$
p_{\theta}\left(y_{t} \mid x_{t}\right)=\frac{e^{g_{\theta}\left(y_{t}, x_{t}\right)}}{\int e^{g_{\theta}\left(\gamma, x_{t}\right)} \mathrm{d} \gamma},
$$

where g_{θ} is a neural network that maps any pair $\left(y_{t}, x_{t}\right)$ to a scalar $g_{\theta}\left(y_{t}, x_{t}\right) \in \mathbb{R}$.

Given x_{t} at test-time, we predict a point estimate \hat{y}_{t} by maximizing $p_{\theta}\left(y_{t} \mid x_{t}\right)$,

$$
\hat{y}_{t}=\underset{y_{t}}{\operatorname{argmax}} p_{\theta}\left(y_{t} \mid x_{t}\right)=\underset{y_{t}}{\operatorname{argmax}} g_{\theta}\left(y_{t}, x_{t}\right) .
$$

Since there is no guarantee that $p_{\theta}\left(y_{t} \mid x_{t}\right)$ is unimodal, we evaluate $g_{\theta}\left(y_{t}, x_{t}\right)$ for a range of values y_{t} and then refine the best of these via T steps of gradient ascent,

$$
y_{t} \leftarrow y_{t}+\lambda \nabla_{y_{t}} g_{\theta}\left(y_{t}, x_{t}\right) .
$$

Examples

We provide several examples which illustrate the utility of the EB-NARX model when applied to data from dynamic systems. These examples include both simulated linear and non-linear data, as well as real data from the CE8 coupled electric drives data set.

For the linear examples, qualitative comparisons are made between the estimated and true distributions. We also compare EB-NARX with a fully-connected network (FCN).

Python code for these examples is available at github.com/jnh277/ebm_arx.

Examples - Pedagogical Examples

$$
y_{t}=0.95 y_{t-1}+e_{t}
$$

Gaussian error e_{t}.

Examples - Linear ARX

$$
y_{t}=1.5 y_{t-1}-0.7 y_{t-2}+u_{t-1}+0.5 u_{t-2}+e_{t}, \quad e_{t} \sim 0.6 \mathcal{N}\left(0,0.1^{2}\right)+0.4 \mathcal{N}\left(0,0.3^{2}\right)
$$

True and estimated $p\left(y_{t} \mid x_{t}\right)$ for validation data.

Examples - Simulated Nonlinear Problem

$$
\begin{aligned}
y_{t}^{*}= & \left(0.8-0.5 e^{-y_{t-1}^{* 2}}\right) y_{t-1}^{*}-\left(0.3+0.9 e^{-y_{t-1}^{* 2}}\right) y_{t-2}^{*} \\
& +u_{t-1}+0.2 u_{t-2}+0.1 u_{t-1} u_{t-2}+v_{t}, \quad v_{t} \sim \mathcal{N}\left(0, \sigma^{2}\right) \\
y_{t}= & y_{t}^{*}+w_{t}, \quad w_{t} \sim \mathcal{N}\left(0, \sigma^{2}\right) .
\end{aligned}
$$

Table 1: Validation set MSE for the fully-connected network (FCN) and EB-NARX model, trained on datasets generated with different noise levels σ and lengths (N).

	$N=100$		$N=250$		$N=500$	
	FCN	EB-NARX	FCN	EB-NARX	FCN	EB-NARX
$\sigma=0.1$	0.122	0.099	0.069	0.070	0.057	0.054
$\sigma=0.3$	0.398	0.390	0.353	0.354	0.289	0.308
$\sigma=0.5$	0.860	0.869	0.809	0.822	0.754	0.779

Examples - Simulated Nonlinear Problem

Estimates of $p\left(y_{t} \mid x_{t}\right)$ for validation data.

Examples - Real Data: Coupled Electric Drives

Illustration of the CE8 coupled electric drives system.

Examples - Real Data: Coupled Electric Drives

Estimates of $p\left(y_{t} \mid x_{t}\right)$ for a sequence of validation data.

Conclusion

We directly learned the full conditional distribution $p\left(y_{t} \mid x_{t}\right)$ for dynamic systems using energy-based models, thus demonstrating their potential within system identification.

Our EB-NARX model $p_{\theta}\left(y_{t} \mid x_{t}\right)$ could learn both very simple and more complex distributions directly from observed data.

We have only considered one-step-ahead prediction. It is not clear how to best propagate $p_{\theta}\left(y_{t} \mid x_{t}\right)$ for multi-step-ahead prediction.

We have only considered NARX models. Future work could explore how to best extend the approach to other model types.

