
Deep Energy-Based NARX Models

Johannes N. Hendriks1, Fredrik K. Gustafsson2, Antônio H. Ribeiro2,

Adrian G. Wills1, Thomas B. Schön2

1School of Engineering, The University of Newcastle, Australia
2Department of Information Technology, Uppsala University, Sweden

The 19th IFAC Symposium on System Identification (SYSID 2021)

Introduction

We consider the problem of learning models for dynamic systems based on observed

input-output data {(ut , yt)}Tt=1.

Specifically, we assume that the current system output yt is related to past outputs

and past inputs xt , {yt−1, . . . , yt−Dy , ut−1, . . . , ut−Du}.

A common approach is to directly regress yt from xt , using a neural network fθ that is

trained by minimizing the mean squared error (MSE),

ŷt = fθ̂(xt),

θ̂ = argmin
θ

1

T

T∑
t=1

‖yt − fθ(xt)‖2.

1/17

Introduction

From a probabilistic perspective, this MSE approach corresponds to minimizing the

negative log-likelihood −
∑T

t=1 log pθ(yt |xt) for a fixed-variance Gaussian model

pθ(yt |xt) = N (y ; fθ(xt), σ
2) of the conditional distribution p(yt |xt).

A fixed-variance, unimodal Gaussian model pθ(yt |xt) = N (y ; fθ(xt), σ
2) is however

fairly restrictive, and could give a poor approximation of the true distribution p(yt |xt)
in many practical situations.

In this paper, we instead utilize highly flexible energy-based models pθ(yt |xt), enabling

p(yt |xt) to be learned directly from the available data.

2/17

Energy-Based NARX Models

We model the distribution p(yt |xt) with a conditional energy-based model (EBM),

pθ(yt |xt) =
egθ(yt ,xt)∫
egθ(γ,xt) dγ

, (1)

where gθ is a neural network that maps any pair (yt , xt) to a scalar gθ(yt , xt) ∈ R.

The EBM pθ(yt |xt) is directly specified via the neural network gθ, which provides a

highly flexible class of functions. This enables pθ(yt |xt) to model a wide range of

distributions, including heavy-tailed, asymmetric or multimodal ones.

Since pθ(yt |xt) in (1) is an EBM that relies on a nonlinear combination of past outputs

and inputs xt , we refer to this as an energy-based NARX (EB-NARX) model.

3/17

Energy-Based NARX Models - Training

We model the distribution p(yt |xt) with a conditional energy-based model (EBM),

pθ(yt |xt) =
egθ(yt ,xt)∫
egθ(γ,xt) dγ

,

where gθ is a neural network that maps any pair (yt , xt) to a scalar gθ(yt , xt) ∈ R.

The neural network gθ(yt , xt) can be trained using various methods for fitting a density

pθ(yt |xt) to observed data {(yt , xt)}Tt=1.

Generally, the most straightforward such method is probably to minimize the negative

log-likelihood L(θ) = −
∑T

t=1 log pθ(yt |xt), which for the EBM pθ(yt |xt) is given by,

L(θ) =
T∑
t=1

log

(∫
egθ(γ,xt) dγ

)
− gθ(yt , xt).

4/17

Energy-Based NARX Models - Training

We model the distribution p(yt |xt) with a conditional energy-based model (EBM),

pθ(yt |xt) =
egθ(yt ,xt)∫
egθ(γ,xt) dγ

,

where gθ is a neural network that maps any pair (yt , xt) to a scalar gθ(yt , xt) ∈ R.

The integral
∫
egθ(γ,xt) dγ is generally intractable, preventing exact evaluation of L(θ),

but can be approximated using numerical integration techniques.

We instead employ noise contrastive estimation (NCE) to train gθ(yt , xt).

5/17

Energy-Based NARX Models - Training using NCE

pθ(yt |xt) =
egθ(yt ,xt)∫
egθ(γ,xt) dγ

Noise contrastive estimation (NCE) entails learning to discriminate between observed

data examples and samples drawn from a noise distribution.

Specifically, gθ(yt , xt) is trained by minimizing the cost function L(θ)=− 1
T

∑T
t=1 Lt(θ),

Lt(θ) = log
exp

(
gθ(y

(0)
t , xt)−log q(y

(0)
t |yt)

)
M∑

m=0
exp

(
gθ(y

(m)
t , xt)−log q(y

(m)
t |yt)

) ,
where y

(0)
t , yt , and {y (m)

t }Mm=1 are M samples drawn from a noise distribution

q(y |yt) that depends on the true output yt .
6/17

Energy-Based NARX Models - Training using NCE

L(θ) = − 1

T

T∑
t=1

Lt(θ), Lt(θ) = log
exp

(
gθ(y

(0)
t , xt)−log q(y

(0)
t |yt)

)
M∑

m=0
exp

(
gθ(y

(m)
t , xt)−log q(y

(m)
t |yt)

) ,
y

(0)
t , yt , {y (m)

t }Mm=1 ∼ q(y |yt) (noise distribution).

Effectively, L(θ) is the softmax cross-entropy loss for a classification problem with

M + 1 classes (which of the M + 1 values {y (m)
t }Mm=0 is the true output yt?).

The noise distribution q(y |yt) is a mixture of K Gaussians centered at yt ,

q(y |yt) =
1

K

K∑
k=1

N (y ; yt , σ
2
k I).

7/17

Energy-Based NARX Models - Training using NCE

L(θ) = − 1

T

T∑
t=1

Lt(θ), Lt(θ) = log
exp

(
gθ(y

(0)
t , xt)−log q(y

(0)
t |yt)

)
M∑

m=0
exp

(
gθ(y

(m)
t , xt)−log q(y

(m)
t |yt)

) ,
y

(0)
t , yt , {y (m)

t }Mm=1 ∼ q(y |yt) (noise distribution).

8/17

Energy-Based NARX Models - Prediction

We model the distribution p(yt |xt) with a conditional energy-based model (EBM),

pθ(yt |xt) =
egθ(yt ,xt)∫
egθ(γ,xt) dγ

,

where gθ is a neural network that maps any pair (yt , xt) to a scalar gθ(yt , xt) ∈ R.

Given xt at test-time, we predict a point estimate ŷt by maximizing pθ(yt |xt),

ŷt = argmax
yt

pθ(yt |xt) = argmax
yt

gθ(yt , xt).

Since there is no guarantee that pθ(yt |xt) is unimodal, we evaluate gθ(yt , xt) for a

range of values yt and then refine the best of these via T steps of gradient ascent,

yt ← yt + λ∇ytgθ(yt , xt).
9/17

Examples

We provide several examples which illustrate the utility of the EB-NARX model when

applied to data from dynamic systems. These examples include both simulated linear

and non-linear data, as well as real data from the CE8 coupled electric drives data set.

For the linear examples, qualitative comparisons are made between the estimated and

true distributions. We also compare EB-NARX with a fully-connected network (FCN).

Python code for these examples is available at github.com/jnh277/ebm arx.

10/17

https://github.com/jnh277/ebm_arx

Examples - Pedagogical Examples

yt = 0.95yt−1 + et .

Gaussian error et .

Bimodal Gaussian error et .

Cauchy error et .

Gaussian error et with state-dependent variance.

11/17

Examples - Linear ARX

yt = 1.5yt−1 − 0.7yt−2 + ut−1 + 0.5ut−2 + et , et ∼ 0.6N (0, 0.12) + 0.4N (0, 0.32).

(a) Sequence (b) t=56

True and estimated p(yt |xt) for validation data.
12/17

Examples - Simulated Nonlinear Problem

y∗t =
(

0.8− 0.5e−y∗2
t−1

)
y∗t−1 −

(
0.3 + 0.9e−y∗2

t−1

)
y∗t−2

+ ut−1 + 0.2ut−2 + 0.1ut−1ut−2 + vt , vt ∼ N (0, σ2)

yt =y∗t + wt , wt ∼ N (0, σ2).

Table 1: Validation set MSE for the fully-connected network (FCN) and EB-NARX model,

trained on datasets generated with different noise levels σ and lengths (N).

N = 100 N = 250 N = 500

FCN EB-NARX FCN EB-NARX FCN EB-NARX

σ = 0.1 0.122 0.099 0.069 0.070 0.057 0.054

σ = 0.3 0.398 0.390 0.353 0.354 0.289 0.308

σ = 0.5 0.860 0.869 0.809 0.822 0.754 0.779

13/17

Examples - Simulated Nonlinear Problem

(c) Sequence (d) t=53

Estimates of p(yt |xt) for validation data.

14/17

Examples - Real Data: Coupled Electric Drives

Illustration of the CE8 coupled electric drives system.

15/17

Examples - Real Data: Coupled Electric Drives

Estimates of p(yt |xt) for a sequence of validation data.

t = 40.

t = 57.

t = 60.

16/17

Conclusion

We directly learned the full conditional distribution p(yt |xt) for dynamic systems using

energy-based models, thus demonstrating their potential within system identification.

Our EB-NARX model pθ(yt |xt) could learn both very simple and more complex

distributions directly from observed data.

We have only considered one-step-ahead prediction. It is not clear how to best

propagate pθ(yt |xt) for multi-step-ahead prediction.

We have only considered NARX models. Future work could explore how to best extend

the approach to other model types.

17/17

