

Learning Proposals for Practical Energy-Based Regression

Fredrik K. Gustafsson Uppsala University

AISTATS 2022 March 14, 2022

An energy-based model (EBM) specifies a probability distribution $p(x; \theta)$ over $x \in \mathcal{X}$ directly via a parameterized scalar function $f_{\theta} : \mathcal{X} \to \mathbb{R}$:

$$p(x; heta) = rac{e^{f_{ heta}(x)}}{Z(heta)}, \quad Z(heta) = \int e^{f_{ heta}(ilde{x})} d ilde{x}$$

By defining $f_{\theta}(x)$ using a deep neural network (DNN), the EBM $p(x; \theta)$ becomes expressive enough to learn practically any distribution from observed data.

Drawback: the normalizing partition function $Z(\theta) = \int e^{f_{\theta}(\tilde{x})} d\tilde{x}$ is intractable, which complicates evaluating or sampling from the EBM $p(x; \theta)$.

Compare with normalizing flow models which are specifically designed to be easy to both evaluate and sample. EBMs instead prioritize maximum model expressivity.

$$p(y|x;\theta) = rac{e^{f_{ heta}(x,y)}}{Z(x, heta)}, \quad Z(x, heta) = \int e^{f_{ heta}(x, ilde y)} d ilde y.$$

The EBM $p(y|x; \theta)$ can learn complex distributions p(y|x) directly from data:

$$p(y|x;\theta) = rac{e^{f_{ heta}(x,y)}}{Z(x, heta)}, \quad Z(x, heta) = \int e^{f_{ heta}(x, ilde y)} d ilde y.$$

The DNN $f_{\theta}(x, y)$ can be trained using various methods for fitting a distribution $p(y|x; \theta)$ to observed data $\{(x_i, y_i)\}_{i=1}^N$.

$$p(y|x;\theta) = rac{e^{f_{ heta}(x,y)}}{Z(x,\theta)}, \quad Z(x,\theta) = \int e^{f_{ heta}(x, ilde{y})} d ilde{y}.$$

The most straightforward training method is probably to approximate the negative log-likelihood $\mathcal{L}(\theta) = -\sum_{i=1}^{N} \log p(y_i|x_i; \theta)$ using importance sampling:

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} \log \left(\frac{1}{M} \sum_{m=1}^{M} \frac{e^{f_{\theta}(x_i, y_i^{(m)})}}{q(y_i^{(m)})} \right) - f_{\theta}(x_i, y_i),$$

 $\{y_i^{(m)}\}_{m=1}^M \sim q(y)$ (proposal distribution).

$$p(y|x;\theta) = rac{e^{f_{\theta}(x,y)}}{Z(x,\theta)}, \quad Z(x,\theta) = \int e^{f_{\theta}(x,\tilde{y})} d\tilde{y}.$$

Previous work has also employed noise contrastive estimation (NCE):

$$J_{\rm NCE}(\theta) = -\frac{1}{N} \sum_{i=1}^{N} J_{\rm NCE}^{(i)}(\theta), \quad J_{\rm NCE}^{(i)}(\theta) = \log \frac{\exp\{f_{\theta}(x_i, y_i^{(0)}) - \log q(y_i^{(0)})\}}{\sum_{m=0}^{M} \exp\{f_{\theta}(x_i, y_i^{(m)}) - \log q(y_i^{(m)})\}},$$

 $y_i^{(0)} \triangleq y_i, \quad \{y_i^{(m)}\}_{m=1}^M \sim q(y) \text{ (noise distribution)}.$

In previous work, the proposal/noise distribution q(y) was set to a mixture of K Gaussian components centered at the true regression target y_i ,

$$q(y) = \frac{1}{K} \sum_{k=1}^{K} \mathcal{N}(y; y_i, \sigma_k^2 I).$$

q(y) contains task-dependent hyperparameters K and $\{\sigma_k^2\}_{k=1}^K$.

q(y) depends on the true target y_i and can thus only be utilized during training.

We address both these limitations by jointly learning a parameterized proposal/noise distribution $q(y|x; \phi)$ during EBM training.

We derive an efficient and convenient objective that can be employed to train $q(y|x; \phi)$ by directly minimizing its KL divergence to the EBM $p(y|x; \theta)$.

We want $q(y|x; \phi)$ to be a close approximation of the EBM $p(y|x; \theta)$. Specifically, we want to find ϕ that minimizes the KL divergence between $q(y|x; \phi)$ and $p(y|x; \theta)$.

Therefore, we seek to compute $\nabla_{\phi} D_{\text{KL}}(p(y|x;\theta) \parallel q(y|x;\phi))$. The gradient $\nabla_{\phi} D_{\text{KL}}$ is generally intractable, but can be conveniently approximated by the following result:

Result 1: For a conditional EBM $p(y|x;\theta) = e^{f_{\theta}(x,y)} / \int e^{f_{\theta}(x,\tilde{y})} d\tilde{y}$ and distribution $q(y|x;\phi)$,

$$abla_{\phi} D_{\mathrm{KL}}(p \parallel q) pprox
abla_{\phi} \log igg(rac{1}{M} \sum_{m=1}^{M} rac{e^{f_{ heta}(x,y^{(m)})}}{q(y^{(m)} \mid x; \phi)} igg),$$

where $\{y^{(m)}\}_{m=1}^{M}$ are M independent samples drawn from $q(y|x; \phi)$.

Result 1: For a conditional EBM $p(y|x;\theta) = e^{f_{\theta}(x,y)} / \int e^{f_{\theta}(x,\tilde{y})} d\tilde{y}$ and distribution $q(y|x;\phi)$,

$$abla_{\phi} D_{\mathrm{KL}}(p \parallel q) pprox
abla_{\phi} \log \left(rac{1}{M} \sum_{m=1}^{M} rac{e^{f_{ heta}(x, y^{(m)})}}{q(y^{(m)} \mid x; \phi)}
ight),$$

where $\{y^{(m)}\}_{m=1}^{M}$ are *M* independent samples drawn from $q(y|x; \phi)$.

Given data $\{x_i\}_{i=1}^N$, Result 1 implies that the proposal/noise distribution $q(y|x; \phi)$ can be trained to approximate the EBM $p(y|x; \theta)$ by minimizing the loss,

$$egin{aligned} J_{ ext{KL}}(\phi) &= rac{1}{N} \sum_{i=1}^N \logigg(rac{1}{M} \sum_{m=1}^M rac{e^{f_ heta(x_i,y_i^{(m)})}}{q(y_i^{(m)}|x_i;\phi)}igg), \ &\{y_i^{(m)}\}_{m=1}^M \sim q(y|x_i;\phi). \end{aligned}$$

Given data $\{x_i\}_{i=1}^N$, Result 1 implies that the proposal/noise distribution $q(y|x; \phi)$ can be trained to approximate the EBM $p(y|x; \theta)$ by minimizing the loss,

$$J_{\text{KL}}(\phi) = \frac{1}{N} \sum_{i=1}^{N} \log\left(\frac{1}{M} \sum_{m=1}^{M} \frac{e^{f_{\theta}(x_i, y_i^{(m)})}}{q(y_i^{(m)} | x_i; \phi)}\right),$$
$$\{y_i^{(m)}\}_{m=1}^{M} \sim q(y | x_i; \phi).$$

Since $J_{\text{KL}}(\phi)$ is identical to the first term of the EBM loss $J(\theta)$ from previous work,

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} \log\left(\frac{1}{M} \sum_{m=1}^{M} \frac{e^{f_{\theta}(x_i, y_i^{(m)})}}{q(y_i^{(m)})}\right) - f_{\theta}(x_i, y_i),$$
(1)

the EBM $p(y|x; \theta)$ and proposal/noise distribution $q(y|x; \phi)$ can be trained by jointly minimizing (1) w.r.t. both θ and ϕ .

$$egin{aligned} J_{ ext{KL}}(\phi) &= rac{1}{N} \sum_{i=1}^N \logigg(rac{1}{M} \sum_{m=1}^M rac{e^{f_ heta(x_i,y_i^{(m)})}}{q(y_i^{(m)}|x_i;\phi)}igg), \ &\{y_i^{(m)}\}_{m=1}^M \sim q(y|x_i;\phi). \end{aligned}$$

The EBM $p(y|x; \theta)$ and proposal/noise distribution $q(y|x; \phi)$ can also be jointly trained by updating ϕ via $J_{\text{KL}}(\phi)$, and updating θ via $J_{\text{NCE}}(\theta)$.

10/12

As $q(y|x; \phi)$ has been trained to approximate the EBM $p(y|x; \theta)$, it can be utilized with self-normalized importance sampling to e.g. compute the EBM mean at test-time, thus producing a stand-alone prediction y^* .

The proposal $q(y|x; \phi)$ can also be used to draw approximate samples from the EBM:

Fredrik K. Gustafsson, Uppsala University

fredrik.gustafsson@it.uu.se

www.fregu856.com