
Learning Proposals for Practical Energy-Based Regression

Fredrik K. Gustafsson

Uppsala University

AISTATS 2022

March 14, 2022



Background: Energy-Based Models

An energy-based model (EBM) specifies a probability distribution p(x ; θ) over

x ∈ X directly via a parameterized scalar function fθ : X → R:

p(x ; θ) =
efθ(x)

Z (θ)
, Z (θ) =

∫
efθ(x̃)dx̃

By defining fθ(x) using a deep neural network (DNN), the EBM p(x ; θ) becomes

expressive enough to learn practically any distribution from observed data.

Drawback: the normalizing partition function Z (θ) =
∫
efθ(x̃)dx̃ is intractable, which

complicates evaluating or sampling from the EBM p(x ; θ).

Compare with normalizing flow models which are specifically designed to be easy to

both evaluate and sample. EBMs instead prioritize maximum model expressivity.
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Background: Energy-Based Regression

Energy-Based Regression: train a DNN fθ : X × Y → R to predict a scalar

value fθ(x , y), then model p(y |x) with the conditional EBM p(y |x ; θ):

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .

The EBM p(y |x ; θ) can learn complex distributions p(y |x) directly from data:
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Background: Energy-Based Regression - Training

Energy-Based Regression: train a DNN fθ : X × Y → R to predict a scalar

value fθ(x , y), then model p(y |x) with the conditional EBM p(y |x ; θ):

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .

The DNN fθ(x , y) can be trained using various methods for fitting a distribution

p(y |x ; θ) to observed data {(xi , yi )}Ni=1.
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Background: Energy-Based Regression - Training

Energy-Based Regression: train a DNN fθ : X × Y → R to predict a scalar

value fθ(x , y), then model p(y |x) with the conditional EBM p(y |x ; θ):

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .

The most straightforward training method is probably to approximate the negative

log-likelihood L(θ) = −
∑N

i=1 log p(yi |xi ; θ) using importance sampling:

J(θ)=
1

N

N∑
i=1

log

(
1

M

M∑
m=1

efθ(xi ,y
(m)
i )

q(y
(m)
i )

)
−fθ(xi , yi ),

{y (m)
i }Mm=1 ∼ q(y) (proposal distribution).
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Background: Energy-Based Regression - Training

Energy-Based Regression: train a DNN fθ : X × Y → R to predict a scalar

value fθ(x , y), then model p(y |x) with the conditional EBM p(y |x ; θ):

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .

Previous work has also employed noise contrastive estimation (NCE):

JNCE(θ)=− 1

N

N∑
i=1

J
(i)
NCE(θ), J

(i)
NCE(θ)=log

exp
{
fθ(xi , y

(0)
i )−log q(y

(0)
i )
}

M∑
m=0

exp
{
fθ(xi , y

(m)
i )−log q(y

(m)
i )

} ,
y
(0)
i , yi , {y (m)

i }Mm=1 ∼ q(y) (noise distribution).
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Practical Limitations of Energy-Based Regression

In previous work, the proposal/noise distribution q(y) was set to a mixture of K

Gaussian components centered at the true regression target yi ,

q(y) =
1

K

K∑
k=1

N (y ; yi , σ
2
k I ).

q(y) contains task-dependent hyperparameters K and {σ2k}Kk=1.

q(y) depends on the true target yi and can thus only be utilized during training.

We address both these limitations by jointly learning a parameterized proposal/noise

distribution q(y |x ;φ) during EBM training.

We derive an efficient and convenient objective that can be employed to train

q(y |x ;φ) by directly minimizing its KL divergence to the EBM p(y |x ; θ).
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Learning the Proposal

We want q(y |x ;φ) to be a close approximation of the EBM p(y |x ; θ). Specifically, we

want to find φ that minimizes the KL divergence between q(y |x ;φ) and p(y |x ; θ).

Therefore, we seek to compute ∇φDKL

(
p(y |x ; θ) ‖ q(y |x ;φ)

)
. The gradient ∇φDKL is

generally intractable, but can be conveniently approximated by the following result:

Result 1: For a conditional EBM p(y |x ; θ) = efθ(x ,y)/
∫
efθ(x ,ỹ)dỹ and distribu-

tion q(y |x ;φ),

∇φDKL

(
p ‖ q

)
≈ ∇φ log

(
1

M

M∑
m=1

efθ(x ,y
(m))

q(y (m)|x ;φ)

)
,

where {y (m)}Mm=1 are M independent samples drawn from q(y |x ;φ).
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Learning the Proposal

Result 1: For a conditional EBM p(y |x ; θ) = efθ(x ,y)/
∫
efθ(x ,ỹ)dỹ and distribu-

tion q(y |x ;φ),

∇φDKL

(
p ‖ q

)
≈ ∇φ log

(
1

M

M∑
m=1

efθ(x ,y
(m))

q(y (m)|x ;φ)

)
,

where {y (m)}Mm=1 are M independent samples drawn from q(y |x ;φ).

Given data {xi}Ni=1, Result 1 implies that the proposal/noise distribution q(y |x ;φ) can

be trained to approximate the EBM p(y |x ; θ) by minimizing the loss,

JKL(φ) =
1

N

N∑
i=1

log

(
1

M

M∑
m=1

efθ(xi ,y
(m)
i )

q(y
(m)
i |xi ;φ)

)
,

{y (m)
i }Mm=1 ∼ q(y |xi ;φ).
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Joint Training Method

Given data {xi}Ni=1, Result 1 implies that the proposal/noise distribution q(y |x ;φ)

can be trained to approximate the EBM p(y |x ; θ) by minimizing the loss,

JKL(φ) =
1

N

N∑
i=1

log

(
1

M

M∑
m=1

efθ(xi ,y
(m)
i )

q(y
(m)
i |xi ;φ)

)
,

{y (m)
i }Mm=1 ∼ q(y |xi ;φ).

Since JKL(φ) is identical to the first term of the EBM loss J(θ) from previous work,

J(θ) =
1

N

N∑
i=1

log

(
1

M

M∑
m=1

efθ(xi ,y
(m)
i )

q(y
(m)
i )

)
−fθ(xi , yi ), (1)

the EBM p(y |x ; θ) and proposal/noise distribution q(y |x ;φ) can be trained by jointly

minimizing (1) w.r.t. both θ and φ.
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Joint Training Method

JKL(φ) =
1

N

N∑
i=1

log

(
1

M

M∑
m=1

efθ(xi ,y
(m)
i )

q(y
(m)
i |xi ;φ)

)
,

{y (m)
i }Mm=1 ∼ q(y |xi ;φ).

The EBM p(y |x ; θ) and proposal/noise distribution q(y |x ;φ) can also be jointly

trained by updating φ via JKL(φ), and updating θ via JNCE(θ).
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Utilizing the Proposal

As q(y |x ;φ) has been trained to approximate the EBM p(y |x ; θ), it can be utilized

with self-normalized importance sampling to e.g. compute the EBM mean at test-time,

thus producing a stand-alone prediction y?.

The proposal q(y |x ;φ) can also be used to draw approximate samples from the EBM:
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