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Background: Energy-Based Models

An energy-based model (EBM) specifies a probability distribution p(x; 6) over
x € X directly via a parameterized scalar function f : X — R:

efO(X) > -

By defining fy(x) using a deep neural network (DNN), the EBM p(x; 6) becomes
expressive enough to learn practically any distribution from observed data.

Drawback: the normalizing partition function Z(6) = feff)(’?)d)"( is intractable, which
complicates evaluating or sampling from the EBM p(x; ).

Compare with normalizing flow models which are specifically designed to be easy to
both evaluate and sample. EBMs instead prioritize maximum model expressivity.
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Background: Energy-Based Regression

Energy-Based Regression: train a DNN fp : X x YV — R to predict a scalar
value fy(x,y), then model p(y|x) with the conditional EBM p(y|x; 0):

fo(x,y)
Z(x,0)

. Z(x,0) = / e 9 gy,

The EBM p(y|x;0) can learn complex distributions p(y|x) directly from data:

Ground Truth Gaussian Ours
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Background: Energy-Based Regression - Training

Energy-Based Regression: train a DNN f : X x Y — R to predict a scalar
value fy(x, y), then model p(y|x) with the conditional EBM p(y|x; 6):

efG(X7y)
Z(x,0)’

plylx:0) = Z(x,6) = [ ¥y,

The DNN fy(x, y) can be trained using various methods for fitting a distribution
p(y|x; 0) to observed data {(x;,yi)},.
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Background: Energy-Based Regression - Training

Energy-Based Regression: train a DNN f) : X x Y — R to predict a scalar
value fy(x,y), then model p(y|x) with the conditional EBM p(y|x; 0):

efG(X’}/)
Z(x,0)’

ply|x; 8) = Z(x,0) = / gy,

The most straightforward training method is probably to approximate the negative
log-likelihood L(0) = — Z,N:l log p(yi|xi; ) using importance sampling:
M

N
J(0)= %Z log (/\142
i=1

m=1 q(yl(m))

efo(xi ¥i™)

>—7[9(Xia)/i)a

{ Y,'(m)}M:l ~ q(y) (proposal distribution).
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Background: Energy-Based Regression - Training

Energy-Based Regression: train a DNN fp : X x ) — R to predict a scalar
value fy(x, y), then model p(y|x) with the conditional EBM p(y|x; 6):

0 eht) Z(x.0 fo(x.3) 4
plybit) = Sy, Z0x0) = [ 0Dy,

Previous work has also employed noise contrastive estimation (NCE):

(0) (0)
(i exp{fy(xi,y; ') —log q(y; )}
Iner() = NE:JNCE N)CE(Q)_log v; )

> expify (. y;™)—log a(y ™)}

yl.(o) = {y;(m)}M:l ~ q(y) (noise distribution).
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Practical Limitations of Energy-Based Regression

In previous work, the proposal/noise distribution g(y) was set to a mixture of K
Gaussian components centered at the true regression target y;,

q(y KZN ylvak )

q(y) contains task-dependent hyperparameters K and {Ji},’le.

q(y) depends on the true target y; and can thus only be utilized during training.

We address both these limitations by jointly learning a parameterized proposal/noise
; @) during EBM training.

distribution g(y|x

We derive an efficient and convenient objective that can be employed to train

)-

q(y|x; ¢) by directly minimizing its KL divergence to the EBM p(y
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Learning the Proposal

We want q(y|x; ¢) to be a close approximation of the EBM p(y/|x; 6). Specifically, we
want to find ¢ that minimizes the KL divergence between g(y|x; ¢) and p(y|x;0).

Therefore, we seek to compute V4 Dk, (p(y|x; 8) || q(y

X; gb)) The gradient VD, is
generally intractable, but can be conveniently approximated by the following result:

Result 1: For a conditional EBM p(y|x;0) = () / [ efo(7)dy and distribu-
tion q(y|x; ¢),
M (m)
1 efG(Xﬂy )
oDr(p Il 4) = Valog | 37 2 a(y(™|x; ¢)

m=1

where {y(™M__ are M independent samples drawn from g(y|x; ¢).
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Learning the Proposal

Result 1: For a conditional EBM p(y|x; ) = e?C)/ [ efo(¥)dy and distribu-
tion g(y|x; ¢),

efo(xy(™) >
b

M
1
VaDi (o a) = Voo (3 D

m=1

where {y(’")},’\r/,’:1 are M independent samples drawn from q(y|x; ¢).

J

Given data {x;}" ;, Result 1 implies that the proposal/noise distribution q(y|x; ¢) can
be trained to approximate the EBM p(y|x; #) by minimizing the loss,
M (m))

N fo(Xi.y;
1 1 elo XY
61 £ 3o (4,37 £
Ng Mm;q(y,-‘ )|xi: 6)

{y,- m)}rl\rﬂrzl ~ q(}/|Xi; ¢) 8/12



Joint Training Method

Given data {x;} ¥, Result 1 implies that the proposal/noise distribution g(y|x; ¢)
can be trained to approximate the EBM p(y|x; #) by minimizing the loss,

N M fo (xi _(m))
1 1 elo\XinYi
o= 130w (4 35 S
i=1

=1 a1 )

™ML~ alylxi ¢).

Since Jk1,(¢) is identical to the first term of the EBM loss J(#) from previous work,
(m)

N M
1 1 efo(xiy;™)
J(G) =N ; log <Mmz:1q(y(m))) *fe(Xia)/i)a (1)

the EBM p(y/|x; @) and proposal/noise distribution g(y|x; ¢) can be trained by jointly

minimizing (1) w.r.t. both € and ¢. 0/12



Joint Training Method

N M (m)
1 1 efo(xiy;™")
Jrr(¢) = N Z log (M Z m>,

=il . CI(Y;( )|Xi; ®)

M~ qlylxi ¢).

The EBM p(y|x; #) and proposal/noise distribution q(y

x; ¢) can also be jointly
trained by updating ¢ via Jkr(¢), and updating 0 via Jxcg(6).

Ground Truth EBM MDN Proposal
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Utilizing the Proposal

As q(y|x; ¢) has been trained to approximate the EBM p(y|x; 0), it can be utilized
with self-normalized importance sampling to e.g. compute the EBM mean at test-time,
thus producing a stand-alone prediction y*.

The proposal q(y/|x; ¢) can also be used to draw approximate samples from the EBM:

EBM MDN Proposal EBM Samples
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