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ut the Presentation

This presentation is mainly based on our recent TMLR paper:

How Reliable is Your Regression Model’s Uncertainty Under Real-World Distribution Shifts?
Fredrik K. Gustafsson, Martin Danelljan, Thomas B. Schén
Transactions on Machine Learning Research (TMLR), 2023

Quite large parts of our previous CVPR Workshops paper will however also be covered,
as this is highly relevant background material:

Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer Vision
Fredrik K. Gustafsson, Martin Danelljan, Thomas B. Schén
The Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops), 2020

2/46



Summary of Contributions

How Reliable is Your Regression Model’s Uncertainty Under Real-World Distribution Shifts?
Fredrik K. Gustafsson, Martin Danelljan, Thomas B. Schén
Transactions on Machine Learning Research (TMLR), 2023

o We propose a benchmark for testing the reliability of regression uncertainty
estimation methods under real-world distribution shifts.

e We then employ our benchmark to evaluate many of the most common
uncertainty estimation methods, as well as two state-of-the-art uncertainty scores
from out-of-distribution detection.

e We find that while all methods are well calibrated when there is no distribution
shift, they become highly overconfident on many of the benchmark datasets —
thus uncovering important limitations of current methods.

e This demonstrates that more work is required in order to develop truly reliable

uncertainty estimation methods for regression.
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1. Background: General Setting

In a supervised regression problem, the task is to predict a continuous target
value y* € Y = RX for any given input x* € X. To solve this, we are also given
a training set of i.i.d. input-target pairs, D = {(x;, y:)}1, (xi, i) ~ p(x,y).

In this presentation, the focus will be on the 1D case, i.e. when ) = R.

The input space X will correspond to the space of images.
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1. Background: General Setting

We view a Deep Neural Network (DNN) simply as a function fy : X — O,
parameterized by & € R”. This function maps inputs x € X to outputs fy(x) € O
in some output space O.

We also divide the DNN fy into a backbone feature extractor, and one or more smaller
network heads. The feature extractor takes x as input and outputs a feature vector
g(x), which is then fed into the network heads, producing the final output fy(x) € O.

i—> f(x)
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1. Background: General Setting

In a supervised regression problem, the task is to predict a continuous target
value y* € Y = RX for any given input x* € X. To solve this, we are also given
a training set of i.i.d. input-target pairs, D = {(x;, y:)}1, (xi,yi) ~ p(x,y).

We view a Deep Neural Network (DNN) simply as a function fy : X — O,
parameterized by & € RP. This function maps inputs x € X to outputs fy(x) € O
in some output space O.

The most common and straightforward deep regression approach is to let the DNN £
directly output predicted targets, y(x) = fy(x), training the DNN by minimizing e.g.
the L2 loss over the training data, J(0) = >I, (yi — fg(X,'))z.
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2. Background: Predictive Uncertainty Estimation using Bayesian DL

DNNs fy : X — O have become the go-to approach within computer vision and many
other domains due to their impressive predictive power. However, they generally fail to
properly capture the uncertainty inherent in their predictions.

The approach of Bayesian deep learning aims to address this issue in a principled
manner. It deals with predictive uncertainty by decomposing it into the distinct types
of aleatoric and epistemic uncertainty.

Aleatoric uncertainty captures inherent and irreducible ambiguity in the data.

Epistemic uncertainty accounts for uncertainty in the DNN model parameters 6.
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2.1 Aleatoric Uncertainty

Given an input x, it is not always obvious what the correct target value y should be.

For example, what is the correct classification target for an image that contains both a
cat and dog? Or, how about images with very low brightness, in which it is difficult to
recognize any objects at all?

Aleatoric uncertainty captures this type of inherent and irreducible ambiguity that can
be present in the inputs x.

Input-dependent aleatoric uncertainty arises whenever the target y is expected to be
inherently more uncertain for some inputs x than others.
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2.1 Aleatoric Uncertainty

UNIVERSITET

This is true e.g. in semantic segmentation, where image pixels right at object
boundaries are inherently more difficult to classify than pixels in the middle of objects.




2.1 Aleatoric Uncertainty

UNIVERSITET

This is true also in automotive 3D object detection, where it is inherently more difficult

to estimate the 3D position and size of distant or partially occluded vehicles.




2.1 Aleatoric Uncertainty

To estimate input-dependent aleatoric uncertainty, the DNN fy : X — O can be used
to specify a model p(y|x; @) of the conditional target distribution.

For example if a Gaussian model is used, p(y|x; 8) = N (y; po(x), 03(x)), the DNN
outputs both a mean fi9(x) and variance o (x) for each input x.

The mean can be taken as a prediction, (x) = ug(x), whereas the variance o7(x)
naturally can be interpreted as a measure of aleatoric uncertainty for this prediction.

a(x)

-
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2.1 Aleatoric Uncertainty

H(x)

a(x)

44

The DNN fy can be trained by minimizing the negative log-likelihood (NLL) £(6),
N
L(0) = ) —logp(yilxi; 0).
i=1

For the Gaussian model p(y|x; 8) = N (y; po(x), 03(x)), minimizing the NLL is

equivalent to minimizing the following loss J(6),
N

X (- me(x) 20
J(H) - Z 0'2(X') + |Og UG(X/)'
i=1 A 13/46



Using DNNs to specify models p(y|x; ) of the conditional target distribution does

however not capture epistemic uncertainty, as information about the uncertainty in

the model parameters 0 is disregarded.

Large epistemic uncertainty is present whenever a large set of model parameters
explains the given training data (approximately) equally well.

4] This is often the case for DNNs, since the

corresponding optimization landscapes are

| @ @ highly multi-modal.

Disregarding the epistemic model uncertainty
can lead to highly confident yet incorrect
predictions, especially for inputs x which are

4] not well-represented by the training data.
4 3 2 A 0 1 2 3 a 14/46




2.2 Epistemic Uncertainty

Epistemic uncertainty can be estimated in a principled manner by performing
approximate Bayesian inference.

Instead of just finding a single point estimate 0 of the model parameters 6, by
minimizing the negative log-likelihood L£(0) = Z,N:l — log p(yi|xi; @) over the training
set D = {(x;, i)}, Bayesian inference entails estimating the full posterior
distribution p(6|D).

The posterior p(A|D) is obtained from the data likelihood TTY., p(y:|xi; #) and a
chosen prior p(#) by applying Bayes' theorem, p(6|D) H,N:1 p(yilxi; 0)p(0).
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2.2 Epistemic Uncertainty

The posterior p(0|D) H,N:1 p(yi|xi; 0)p(@) is then utilized to obtain the predictive
posterior distribution p(y|x, D),

pylx; D) = [ p(y|x; 0)p(0|D)d0

-

plylx; 6(™),  6U™ ~ p(6|D),

Mz

m=1

which captures both aleatoric and epistemic uncertainty.

In practice, obtaining samples from the true posterior p(6|D) is virtually impossible for
DNNSs, requiring an approximate posterior g(6) ~ p(0|D) to be used instead.
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2.3 lllustrative Example

We consider the following simple 1D regression problem:

. 0.15
P = N(yin(x),02(), ) =sin(), o) = 1

(a) True data generator p(y|x). (b) Training dataset {(x;,y;)}°%.
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2.3 lllustrative Example - Direct Regression

A DNN fy trained to directly output predicted targets, y(x) = fp(x), is able to
accurately regress the mean p(x) = sin(x) for x € [—3, 3]. However, this model fails to
capture any notion of uncertainty.
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2.3 lllustrative Example - Gaussian Model, NLL

Instead, the DNN fy can be used to specify a Gaussian model p(y|x; 6) =
= N (y; po(x), o3(x)), trained by minimizing the NLL £(#). The model closely

matches the true p(y|x) for x € [—3, 3], accounting for aleatoric uncertainty.

For inputs |x| > 3 not seen during
training, however, the estimated mean
tg(x) deviates significantly from the
true p(x) = sin(x), while the estimated
uncertainty o3(x) remains very small.
That is, the model becomes
overconfident for inputs |x| > 3.
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2.3 lllustrative Example - Gaussian Model, Bayesian Inference

The Gaussian DNN model p(y|x; 8) = N (y; po(x), 03(x)) can instead be estimated
M

via approximate Bayesian inference, with M = 1000 samples {0(’”) m—1

obtained via
HMC used in (1), in order to account for both aleatoric and epistemic uncertainty.

The model now predicts a more
reasonable uncertainty o3(x) in the
region with no available training data.

While the estimated mean py(x) still
deviates from the true p(x) = sin(x)
for [x| > 3, the uncertainty o3(x) also
increases accordingly — the model does
not become overconfident.
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2.4 Ensembling as Approximate Bayesian Inference

While HMC (Hamiltonian Monte Carlo) is considered a “gold standard” method for
approximate Bayesian inference, it does not scale well to the large DNNs fy used in
real-world applications.

In practice, among scalable alternatives, it has been shown difficult to beat the simple
approach of ensembling. This entails training M identical DNNs by repeatedly
minimizing the negative log-likelihood £(8) = S_N, — log p(yi|xi; #) with random
initialization.

This gives M point estimates {9(”7)},’\,/,’:1 of the DNN model parameters, which can be
used as approximate samples for the predictive posterior distribution,
1M

p(y|x, D) = /p(y|x; 0)p(0|D)df ~ m py|x; 9(m).
m=1
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2.4 Ensembling as Approximate Bayesian Inference

In the illustrative 1D regression example, ensembling provides a good approximation of
HMC, even for relatively small values of M.

(a) HMC, M = 1000. (b) Ensembling, M = 16.
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3. Background: Prediction Intervals, Coverage & Calibration

Given a desired miscoverage rate a €]0,1[, a prediction interval C,(x*) =
[Lo(x*), Ua(x*)] € R is a function that maps the input x* onto an interval that
should cover the true regression target y* with probability 1 — «.

For any set {(x*, y7) ;\/:*1 of N* examples, the empirical interval coverage is the
proportion of inputs for which the prediction interval covers the target,

N*
Coverage(C,) L Z]I{y,-* € Cu(x)} (2)

= N*
i=1

If the coverage equals 1 — «r, we say that the prediction intervals are perfectly
calibrated. Unless stated otherwise, we here set &« = 0.1. The prediction intervals

should thus obtain a coverage of 90%. 23/46



3. Background: Prediction Intervals, Coverage & Calibration

Prediction interval: Co(x*) = [La(x*), Us(x*)] C R.

Empirical interval coverage: Coverage(C,) = 7= Z,N:*l I{y* € Cu(xF)}-

With a trained Gaussian DNN model p(y|x; 0) = N (y; g(x), 03(x)), a prediction
interval C,(x*) for a given input x* can be constructed as,

Ca(x*) = [po(x") = 0o(x")®7H(1 — a/2), no(x*) + op(x*)®7H(1 — a/2)],

where ® is the CDF of the standard normal distribution.
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3. Background: Prediction Intervals, Coverage & Calibration

With a trained Gaussian DNN model p(y|x; ) = N (y; uo(x), o5(x)), a predic-
tion interval C,(x*) for a given input x* can be constructed as,

Ca(x*) = [o(x") = op(x) @71 (L — a/2), pg(x") + op(x*)® (L~ a/2)], (3)

where ® is the CDF of the standard normal distribution.

With a trained ensemble {@(m)}l‘,,/’:l of M such Gaussian DNN models, a single mean

2

{1 and variance 6 can be computed as,

1 Y 1 Y )
a(x*) = v Z Lt (X¥), 32(X*) i Z <(ﬁ(X*) — Ho(m) (X*)) + Ug(m) (X*)>7
m=1 m=1

and then plugged into (3) to construct a prediction interval C,(x*) for the input x*.
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4. Background: Selective Prediction
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4. Background: Selective Prediction

The general idea of selective prediction is to give a model the option to abstain from
outputting predictions for some inputs.

This is achieved by combining the prediction model fy with an uncertainty function
ks X — R. Given an input x*, the prediction fp(x*) is output if the uncertainty

rf(x*) < 7, otherwise x* is rejected and no prediction is made.

The prediction rate is the proportion of inputs for which a prediction is output,

N*
. 1 .
Predition Rate = N 2_1 H{re(x7) <7} (4)
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4. Background: Selective Prediction

We combine selective prediction with standard regression methods. A prediction
interval C,(x*) and predicted target y(x*) are thus output if and only if kf(x*) < 7.
Our aim is for this to improve the calibration of the output prediction intervals.

For r¢(x), the variance 62(x) of a Gaussian ensemble could be used, for example.

One could also use some of the various uncertainty scores employed in the rich
out-of-distribution (OOD) detection literature. In OOD detection, the task is to
distinguish in-distribution inputs x, inputs which are similar to those of the training set
{(x:, i)}, from out-of-distribution inputs.

A principled approach to OOD detection would be to fit a model of p(x) on the
training set. Inputs x for which p(x) is small are then deemed OOD. One can also fit a
simple model to the feature vectors g(x), modelling p(x) indirectly.
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5. Summary of Contributions
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5. Summary of Contributions (Repetition)

How Reliable is Your Regression Model’s Uncertainty Under Real-World Distribution Shifts?
Fredrik K. Gustafsson, Martin Danelljan, Thomas B. Schén
Transactions on Machine Learning Research (TMLR), 2023

o We propose a benchmark for testing the reliability of regression uncertainty
estimation methods under real-world distribution shifts.

e We then employ our benchmark to evaluate many of the most common
uncertainty estimation methods, as well as two state-of-the-art uncertainty scores
from out-of-distribution detection.

e We find that while all methods are well calibrated when there is no distribution
shift, they become highly overconfident on many of the benchmark datasets —
thus uncovering important limitations of current methods.

e This demonstrates that more work is required in order to develop truly reliable

uncertainty estimation methods for regression.
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6. Motivating Example
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6. Motivating Example

Much of the work in the How Reliable is Your Regression Model’s Uncertainty Under
Real-World Distribution Shifts? paper was inspired and motivated by concurrent work on
ECG-based electrolyte prediction.

Abnormal potassium (K™) concentration levels in the human body can lead to serious
heart conditions. If the concentration could be accurately monitored using an
ECG-based regression model, potentially life-threatening conditions could be avoided.
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6. Motivating Example

We recently trained a DNN on this task and obtained reasonable regression accuracy
(to train the model, we utilized a large-scale dataset of over 290000 ECGs from adult
patients attending emergency departments at Swedish hospitals).

During this work, we started thinking more carefully about the question: Would it be
possible to actually deploy this model in clinical practice at the university
hospital? What requirements would such real-world deployment within a safety-critical

domain put on this deep regression model?
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6. Motivating Example

The model must at least be well calibrated. If it outputs a prediction and a 90%
prediction interval for each input, 90% interval coverage should actually be achieved.

Otherwise, if the model becomes overconfident and outputs highly confident yet
incorrect predictions, providing uncertainty estimates might just instill a false sense of
security — arguably making the model even less suitable for safety-critical deployment.

Moreover, the model must remain well calibrated also under the wide variety of
distribution shifts that might be encountered during practical deployment.

For example, a model trained on data collected solely at a large urban hospital in the
year 2020, for instance, should output well-calibrated predictions also in 2023, for
patients both from urban and rural areas.
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7. Proposed Benchmark - Datasets
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We collect 8 publicly available datasets for different image-based regression tasks, with
various types of distribution shifts (e.g., train on satellite images captured in densely
populated American cities — test on images captured in a rural European area).

2 synthetic datasets, 6 real-world datasets. 6592 - 20614 training images. 32/46



7. Proposed Benchmark - Evaluation

We evaluate regression uncertainty estimation methods mainly in terms of prediction
interval coverage, Coverage(C,) = 7= ZlNz*l {y* € Cu(x)}.

If a method outputs a prediction y(x) and a 90% prediction interval Gy 1(x) for each
input x, does the method actually achieve 90% coverage on the test set? l.e., are the
prediction intervals calibrated?

We also evaluate in terms of average interval length on the val set. This is a natural
secondary metric, since a method that achieves a coverage close to 1 — a but outputs
extremely large intervals for all inputs x, would not be particularly useful in practice.
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7. Proposed Benchmark - Evaluation - Selective Prediction Methods

For methods based on selective prediction, the only difference is that predictions y(x)
and prediction intervals C,(x) are output only for some test inputs x (iff rf(x) < 7).
The prediction interval coverage is thus computed only on this subset of test.

For these methods, the proportion of inputs for which a prediction actually is output is
another natural secondary metric. We thus also evaluate in terms of the prediction rate
= Z,N:*I I{rf(x*) < 7} on test.

If a coverage close to 1 — « is achieved with a very low prediction rate, the method
might still not be practically useful in certain applications.
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Outline

8. Evaluated Methods
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8. Evaluated Methods

We evaluate five common regression uncertainty estimation methods, which all output
a 90% prediction interval Cp1(x) and a predicted target y(x) € Co.1(x) for each input.

Two of these methods we also combine with selective prediction, utilizing four different
uncertainty functions rkf(x).

In total, we evaluate 10 different methods.
We calibrate the prediction intervals, for each of the 10 methods, such that exactly

90% interval coverage is obtained on the val set. Ideally, the coverage should then not
change from the val set to the test set.
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8. Evaluated Methods - Common Uncertainty Estimation Methods

Conformal Prediction.
Ensemble.
Gaussian.
Gaussian Ensemble.

Quantile Regression.
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8. Evaluated Methods - Selective Prediction Methods

Gaussian + Selective GMM.

e Combining a Gaussian model p(y|x; 0) = N (y; uo(x), 03(x)) with selective
prediction. A GMM is fit to the feature vectors {g(x;)}; of the training set. The
GMM likelihood is then taken as the uncertainty score, r¢(x) = —~GMM/(g(x)).

Gaussian + Selective kNN.

e The average distance from g(x) to its k nearest neighbors among the train
feature vectors {g(x;)}" ; is taken as the uncertainty score, r¢(x) = kNN(g(x)).

Gaussian + Selective Variance.
Gaussian Ensemble + Selective GMM.

Gaussian Ensemble 4 Selective Ensemble Variance
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9. Results
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9. Results - Common Uncertainty Estimation Methods - Synthetic
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9. Results - Common Uncertainty Estimation Methods - Sy
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9. Results - Selective Prediction Methods - Synthetic Datasets
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9. Results - Selective Prediction Methods - Real-World Datasets
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10. Main Actionable Takeaways

(1/4) All methods are well calibrated on baseline datasets with no distribution shift,
but become highly overconfident in many realistic scenarios. Uncertainty estimation
methods must therefore be evaluated using sufficiently challenging benchmarks.
Otherwise, one might be lead to believe that methods will be more reliable during

real-world deployment than they actually are.

(2/4) Conformal prediction methods have commonly promoted theoretical coverage
guarantees, but these depend on an assumption that is unlikely to hold in many
practical applications. Consequently, also these methods can become highly
overconfident in realistic scenarios. If the underlying assumptions are not examined
critically by practitioners, such theoretical guarantees risk instilling a false sense of

security — making these models even less suitable for safety-critical deployment.
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10. Main Actionable Takeaways

(3/4) The clear performance difference between synthetic and real-world datasets
observed for selective prediction methods based on feature-space density is a very
interesting direction for future work. If the reasons for this performance gap can be
understood, an uncertainty estimation method that stays well calibrated across all
datasets could potentially be developed.

(4/4) Selective prediction methods based on feature-space density perform well
relative to other methods (as expected based on their state-of-the-art OOD detection
performance), but are also overconfident in many cases. Only comparing the relative
performance of different methods is therefore not sufficient. To track if actual progress
is being made towards the ultimate goal of truly reliable uncertainty estimation
methods, benchmarks must also evaluate method performance in an absolute sense.
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Summary of Contributions (Repetition)

How Reliable is Your Regression Model’s Uncertainty Under Real-World Distribution Shifts?
Fredrik K. Gustafsson, Martin Danelljan, Thomas B. Schén
Transactions on Machine Learning Research (TMLR), 2023

o We propose a benchmark for testing the reliability of regression uncertainty
estimation methods under real-world distribution shifts.

e We then employ our benchmark to evaluate many of the most common
uncertainty estimation methods, as well as two state-of-the-art uncertainty scores
from out-of-distribution detection.

e We find that while all methods are well calibrated when there is no distribution
shift, they become highly overconfident on many of the benchmark datasets —
thus uncovering important limitations of current methods.

e This demonstrates that more work is required in order to develop truly reliable

uncertainty estimation methods for regression.
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Contact & Feedback

Fredrik K. Gustafsson
fredrik.gustafsson@it.uu.se

www . fregu856. com

Please feel free to leave any type of anonymous
feedback on this presentation:
www . fregu856. com/post/feedback
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