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About the Presentation

This presentation is mainly based on our recent TMLR paper:

How Reliable is Your Regression Model’s Uncertainty Under Real-World Distribution Shifts?

Fredrik K. Gustafsson, Martin Danelljan, Thomas B. Schön

Transactions on Machine Learning Research (TMLR), 2023

Quite large parts of our previous CVPR Workshops paper will however also be covered,

as this is highly relevant background material:

Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer Vision

Fredrik K. Gustafsson, Martin Danelljan, Thomas B. Schön

The Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops), 2020
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Summary of Contributions

How Reliable is Your Regression Model’s Uncertainty Under Real-World Distribution Shifts?

Fredrik K. Gustafsson, Martin Danelljan, Thomas B. Schön

Transactions on Machine Learning Research (TMLR), 2023

• We propose a benchmark for testing the reliability of regression uncertainty

estimation methods under real-world distribution shifts.

• We then employ our benchmark to evaluate many of the most common

uncertainty estimation methods, as well as two state-of-the-art uncertainty scores

from out-of-distribution detection.

• We find that while all methods are well calibrated when there is no distribution

shift, they become highly overconfident on many of the benchmark datasets –

thus uncovering important limitations of current methods.

• This demonstrates that more work is required in order to develop truly reliable

uncertainty estimation methods for regression.
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1. Background: General Setting

In a supervised regression problem, the task is to predict a continuous target

value y? ∈ Y = RK for any given input x? ∈ X . To solve this, we are also given

a training set of i.i.d. input-target pairs, D = {(xi , yi )}Ni=1, (xi , yi ) ∼ p(x , y).

In this presentation, the focus will be on the 1D case, i.e. when Y = R.

The input space X will correspond to the space of images.
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1. Background: General Setting

We view a Deep Neural Network (DNN) simply as a function fθ : X → O,

parameterized by θ ∈ RP . This function maps inputs x ∈ X to outputs fθ(x) ∈ O
in some output space O.

We also divide the DNN fθ into a backbone feature extractor, and one or more smaller

network heads. The feature extractor takes x as input and outputs a feature vector

g(x), which is then fed into the network heads, producing the final output fθ(x) ∈ O.

x

f(x)
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1. Background: General Setting

In a supervised regression problem, the task is to predict a continuous target

value y? ∈ Y = RK for any given input x? ∈ X . To solve this, we are also given

a training set of i.i.d. input-target pairs, D = {(xi , yi )}Ni=1, (xi , yi ) ∼ p(x , y).

We view a Deep Neural Network (DNN) simply as a function fθ : X → O,

parameterized by θ ∈ RP . This function maps inputs x ∈ X to outputs fθ(x) ∈ O
in some output space O.

The most common and straightforward deep regression approach is to let the DNN fθ

directly output predicted targets, ŷ(x) = fθ(x), training the DNN by minimizing e.g.

the L2 loss over the training data, J(θ) =
∑N

i=1

(
yi − fθ(xi )

)2
.
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2. Background: Predictive Uncertainty Estimation using Bayesian DL

DNNs fθ : X → O have become the go-to approach within computer vision and many

other domains due to their impressive predictive power. However, they generally fail to

properly capture the uncertainty inherent in their predictions.

The approach of Bayesian deep learning aims to address this issue in a principled

manner. It deals with predictive uncertainty by decomposing it into the distinct types

of aleatoric and epistemic uncertainty.

Aleatoric uncertainty captures inherent and irreducible ambiguity in the data.

Epistemic uncertainty accounts for uncertainty in the DNN model parameters θ.
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2.1 Aleatoric Uncertainty

Given an input x , it is not always obvious what the correct target value y should be.

For example, what is the correct classification target for an image that contains both a

cat and dog? Or, how about images with very low brightness, in which it is difficult to

recognize any objects at all?

Aleatoric uncertainty captures this type of inherent and irreducible ambiguity that can

be present in the inputs x .

Input-dependent aleatoric uncertainty arises whenever the target y is expected to be

inherently more uncertain for some inputs x than others.
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2.1 Aleatoric Uncertainty

This is true e.g. in semantic segmentation, where image pixels right at object

boundaries are inherently more difficult to classify than pixels in the middle of objects.
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2.1 Aleatoric Uncertainty

This is true also in automotive 3D object detection, where it is inherently more difficult

to estimate the 3D position and size of distant or partially occluded vehicles.
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2.1 Aleatoric Uncertainty

To estimate input-dependent aleatoric uncertainty, the DNN fθ : X → O can be used

to specify a model p(y |x ; θ) of the conditional target distribution.

For example if a Gaussian model is used, p(y |x ; θ) = N
(
y ;µθ(x), σ2θ(x)

)
, the DNN

outputs both a mean µθ(x) and variance σ2θ(x) for each input x .

The mean can be taken as a prediction, ŷ(x) = µθ(x), whereas the variance σ2θ(x)

naturally can be interpreted as a measure of aleatoric uncertainty for this prediction.

x

μ(x)

σ(x)
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2.1 Aleatoric Uncertainty

x

μ(x)

σ(x)

The DNN fθ can be trained by minimizing the negative log-likelihood (NLL) L(θ),

L(θ) =
N∑
i=1

− log p(yi |xi ; θ).

For the Gaussian model p(y |x ; θ) = N
(
y ;µθ(x), σ2θ(x)

)
, minimizing the NLL is

equivalent to minimizing the following loss J(θ),

J(θ) =
N∑
i=1

(
yi − µθ(xi )

)2
σ2θ(xi )

+ log σ2θ(xi ).
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2.2 Epistemic Uncertainty

Using DNNs to specify models p(y |x ; θ) of the conditional target distribution does

however not capture epistemic uncertainty, as information about the uncertainty in

the model parameters θ is disregarded.

Large epistemic uncertainty is present whenever a large set of model parameters

explains the given training data (approximately) equally well.

This is often the case for DNNs, since the

corresponding optimization landscapes are

highly multi-modal.

Disregarding the epistemic model uncertainty

can lead to highly confident yet incorrect

predictions, especially for inputs x which are

not well-represented by the training data.
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2.2 Epistemic Uncertainty

Epistemic uncertainty can be estimated in a principled manner by performing

approximate Bayesian inference.

Instead of just finding a single point estimate θ̂ of the model parameters θ, by

minimizing the negative log-likelihood L(θ) =
∑N

i=1− log p(yi |xi ; θ) over the training

set D = {(xi , yi )}Ni=1, Bayesian inference entails estimating the full posterior

distribution p(θ|D).

The posterior p(θ|D) is obtained from the data likelihood
∏N

i=1 p(yi |xi ; θ) and a

chosen prior p(θ) by applying Bayes’ theorem, p(θ|D) ∝
∏N

i=1 p(yi |xi ; θ)p(θ).
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2.2 Epistemic Uncertainty

The posterior p(θ|D) ∝
∏N

i=1 p(yi |xi ; θ)p(θ) is then utilized to obtain the predictive

posterior distribution p(y |x ,D),

p(y |x ,D) =

∫
p(y |x ; θ)p(θ|D)dθ

≈ 1

M

M∑
m=1

p(y |x ; θ(m)), θ(m) ∼ p(θ|D),

(1)

which captures both aleatoric and epistemic uncertainty.

In practice, obtaining samples from the true posterior p(θ|D) is virtually impossible for

DNNs, requiring an approximate posterior q(θ) ≈ p(θ|D) to be used instead.
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2.3 Illustrative Example

We consider the following simple 1D regression problem:

p(y |x) = N
(
y ;µ(x), σ2(x)

)
, µ(x) = sin(x), σ(x) =

0.15

1 + e−x
.

(a) True data generator p(y |x).
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(b) Training dataset {(xi , yi )}1000i=1 . 17/46



2.3 Illustrative Example - Direct Regression

A DNN fθ trained to directly output predicted targets, ŷ(x) = fθ(x), is able to

accurately regress the mean µ(x) = sin(x) for x ∈ [−3, 3]. However, this model fails to

capture any notion of uncertainty.
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2.3 Illustrative Example - Gaussian Model, NLL

Instead, the DNN fθ can be used to specify a Gaussian model p(y |x ; θ) =

= N
(
y ;µθ(x), σ2θ(x)

)
, trained by minimizing the NLL L(θ). The model closely

matches the true p(y |x) for x ∈ [−3, 3], accounting for aleatoric uncertainty.

6 4 2 0 2 4 6
4

3

2

1

0

1

2

3

4 For inputs |x | > 3 not seen during

training, however, the estimated mean

µθ(x) deviates significantly from the

true µ(x) = sin(x), while the estimated

uncertainty σ2θ(x) remains very small.

That is, the model becomes

overconfident for inputs |x | > 3.
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2.3 Illustrative Example - Gaussian Model, Bayesian Inference

The Gaussian DNN model p(y |x ; θ) = N
(
y ;µθ(x), σ2θ(x)

)
can instead be estimated

via approximate Bayesian inference, with M = 1 000 samples {θ(m)}Mm=1 obtained via

HMC used in (1), in order to account for both aleatoric and epistemic uncertainty.
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4 The model now predicts a more

reasonable uncertainty σ2θ(x) in the

region with no available training data.

While the estimated mean µθ(x) still

deviates from the true µ(x) = sin(x)

for |x | > 3, the uncertainty σ2θ(x) also

increases accordingly – the model does

not become overconfident.
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2.4 Ensembling as Approximate Bayesian Inference

While HMC (Hamiltonian Monte Carlo) is considered a “gold standard” method for

approximate Bayesian inference, it does not scale well to the large DNNs fθ used in

real-world applications.

In practice, among scalable alternatives, it has been shown difficult to beat the simple

approach of ensembling. This entails training M identical DNNs by repeatedly

minimizing the negative log-likelihood L(θ) =
∑N

i=1− log p(yi |xi ; θ) with random

initialization.

This gives M point estimates {θ̂(m)}Mm=1 of the DNN model parameters, which can be

used as approximate samples for the predictive posterior distribution,

p(y |x ,D) =

∫
p(y |x ; θ)p(θ|D)dθ ≈ 1

M

M∑
m=1

p(y |x ; θ̂(m)).
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2.4 Ensembling as Approximate Bayesian Inference

In the illustrative 1D regression example, ensembling provides a good approximation of

HMC, even for relatively small values of M.
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(a) HMC, M = 1 000.
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(b) Ensembling, M = 16.
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3. Background: Prediction Intervals, Coverage & Calibration

Given a desired miscoverage rate α ∈]0, 1[, a prediction interval Cα(x?) =

[Lα(x?), Uα(x?)] ⊆ R is a function that maps the input x? onto an interval that

should cover the true regression target y? with probability 1− α.

For any set {(x?i , y?i )}N?

i=1 of N? examples, the empirical interval coverage is the

proportion of inputs for which the prediction interval covers the target,

Coverage(Cα) =
1

N?

N?∑
i=1

I{y?i ∈ Cα(x?i )}. (2)

If the coverage equals 1− α, we say that the prediction intervals are perfectly

calibrated. Unless stated otherwise, we here set α = 0.1. The prediction intervals

should thus obtain a coverage of 90%. 23/46



3. Background: Prediction Intervals, Coverage & Calibration

Prediction interval: Cα(x?) = [Lα(x?), Uα(x?)] ⊆ R.

Empirical interval coverage: Coverage(Cα) = 1
N?

∑N?

i=1 I{y?i ∈ Cα(x?i )}.

With a trained Gaussian DNN model p(y |x ; θ) = N
(
y ;µθ(x), σ2θ(x)

)
, a prediction

interval Cα(x?) for a given input x? can be constructed as,

Cα(x?) = [µθ(x?)− σθ(x?)Φ−1(1− α/2), µθ(x?) + σθ(x?)Φ−1(1− α/2)],

where Φ is the CDF of the standard normal distribution.
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3. Background: Prediction Intervals, Coverage & Calibration

With a trained Gaussian DNN model p(y |x ; θ) = N
(
y ;µθ(x), σ2θ(x)

)
, a predic-

tion interval Cα(x?) for a given input x? can be constructed as,

Cα(x?) = [µθ(x?)− σθ(x?)Φ−1(1− α/2), µθ(x?) + σθ(x?)Φ−1(1− α/2)], (3)

where Φ is the CDF of the standard normal distribution.

With a trained ensemble {fθ(m)}Mm=1 of M such Gaussian DNN models, a single mean

µ̂ and variance σ̂2 can be computed as,

µ̂(x?) =
1

M

M∑
m=1

µθ(m)(x?), σ̂2(x?) =
1

M

M∑
m=1

((
µ̂(x?)− µθ(m)(x?)

)2
+ σ2

θ(m)(x
?)

)
,

and then plugged into (3) to construct a prediction interval Cα(x?) for the input x?.
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4. Background: Selective Prediction

The general idea of selective prediction is to give a model the option to abstain from

outputting predictions for some inputs.

This is achieved by combining the prediction model fθ with an uncertainty function

κf : X → R. Given an input x?, the prediction fθ(x?) is output if the uncertainty

κf (x?) ≤ τ , otherwise x? is rejected and no prediction is made.

The prediction rate is the proportion of inputs for which a prediction is output,

Predition Rate =
1

N?

N?∑
i=1

I{κf (x?i ) ≤ τ}. (4)
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4. Background: Selective Prediction

We combine selective prediction with standard regression methods. A prediction

interval Cα(x?) and predicted target ŷ(x?) are thus output if and only if κf (x?) ≤ τ .

Our aim is for this to improve the calibration of the output prediction intervals.

For κf (x), the variance σ̂2(x) of a Gaussian ensemble could be used, for example.

One could also use some of the various uncertainty scores employed in the rich

out-of-distribution (OOD) detection literature. In OOD detection, the task is to

distinguish in-distribution inputs x , inputs which are similar to those of the training set

{(xi , yi )}Ni=1, from out-of-distribution inputs.

A principled approach to OOD detection would be to fit a model of p(x) on the

training set. Inputs x for which p(x) is small are then deemed OOD. One can also fit a

simple model to the feature vectors g(x), modelling p(x) indirectly.
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5. Summary of Contributions (Repetition)

How Reliable is Your Regression Model’s Uncertainty Under Real-World Distribution Shifts?

Fredrik K. Gustafsson, Martin Danelljan, Thomas B. Schön

Transactions on Machine Learning Research (TMLR), 2023

• We propose a benchmark for testing the reliability of regression uncertainty

estimation methods under real-world distribution shifts.

• We then employ our benchmark to evaluate many of the most common

uncertainty estimation methods, as well as two state-of-the-art uncertainty scores

from out-of-distribution detection.

• We find that while all methods are well calibrated when there is no distribution

shift, they become highly overconfident on many of the benchmark datasets –

thus uncovering important limitations of current methods.

• This demonstrates that more work is required in order to develop truly reliable

uncertainty estimation methods for regression.
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6. Motivating Example

x

Kᐩ

Much of the work in the How Reliable is Your Regression Model’s Uncertainty Under

Real-World Distribution Shifts? paper was inspired and motivated by concurrent work on

ECG-based electrolyte prediction.

Abnormal potassium (K+) concentration levels in the human body can lead to serious

heart conditions. If the concentration could be accurately monitored using an

ECG-based regression model, potentially life-threatening conditions could be avoided.
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6. Motivating Example

x

Kᐩ

We recently trained a DNN on this task and obtained reasonable regression accuracy

(to train the model, we utilized a large-scale dataset of over 290 000 ECGs from adult

patients attending emergency departments at Swedish hospitals).

During this work, we started thinking more carefully about the question: Would it be

possible to actually deploy this model in clinical practice at the university

hospital? What requirements would such real-world deployment within a safety-critical

domain put on this deep regression model?
30/46



6. Motivating Example

The model must at least be well calibrated. If it outputs a prediction and a 90%

prediction interval for each input, 90% interval coverage should actually be achieved.

Otherwise, if the model becomes overconfident and outputs highly confident yet

incorrect predictions, providing uncertainty estimates might just instill a false sense of

security – arguably making the model even less suitable for safety-critical deployment.

Moreover, the model must remain well calibrated also under the wide variety of

distribution shifts that might be encountered during practical deployment.

For example, a model trained on data collected solely at a large urban hospital in the

year 2020, for instance, should output well-calibrated predictions also in 2023, for

patients both from urban and rural areas.
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7. Proposed Benchmark - Datasets
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We collect 8 publicly available datasets for different image-based regression tasks, with

various types of distribution shifts (e.g., train on satellite images captured in densely

populated American cities – test on images captured in a rural European area).

2 synthetic datasets, 6 real-world datasets. 6 592 - 20 614 training images. 32/46



7. Proposed Benchmark - Evaluation

We evaluate regression uncertainty estimation methods mainly in terms of prediction

interval coverage, Coverage(Cα) = 1
N?

∑N?

i=1 I{y?i ∈ Cα(x?i )}.

If a method outputs a prediction ŷ(x) and a 90% prediction interval C0.1(x) for each

input x , does the method actually achieve 90% coverage on the test set? I.e., are the

prediction intervals calibrated?

We also evaluate in terms of average interval length on the val set. This is a natural

secondary metric, since a method that achieves a coverage close to 1− α but outputs

extremely large intervals for all inputs x , would not be particularly useful in practice.
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7. Proposed Benchmark - Evaluation - Selective Prediction Methods

For methods based on selective prediction, the only difference is that predictions ŷ(x)

and prediction intervals Cα(x) are output only for some test inputs x (iff κf (x) ≤ τ).

The prediction interval coverage is thus computed only on this subset of test.

For these methods, the proportion of inputs for which a prediction actually is output is

another natural secondary metric. We thus also evaluate in terms of the prediction rate
1
N?

∑N?

i=1 I{κf (x?i ) ≤ τ} on test.

If a coverage close to 1− α is achieved with a very low prediction rate, the method

might still not be practically useful in certain applications.
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8. Evaluated Methods

We evaluate five common regression uncertainty estimation methods, which all output

a 90% prediction interval C0.1(x) and a predicted target ŷ(x) ∈ C0.1(x) for each input.

Two of these methods we also combine with selective prediction, utilizing four different

uncertainty functions κf (x).

In total, we evaluate 10 different methods.

We calibrate the prediction intervals, for each of the 10 methods, such that exactly

90% interval coverage is obtained on the val set. Ideally, the coverage should then not

change from the val set to the test set.
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8. Evaluated Methods - Common Uncertainty Estimation Methods

Conformal Prediction.

Ensemble.

Gaussian.

Gaussian Ensemble.

Quantile Regression.
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8. Evaluated Methods - Selective Prediction Methods

Gaussian + Selective GMM.

• Combining a Gaussian model p(y |x ; θ) = N
(
y ;µθ(x), σ2θ(x)

)
with selective

prediction. A GMM is fit to the feature vectors {g(xi )}Ni=1 of the training set. The

GMM likelihood is then taken as the uncertainty score, κf (x) = −GMM
(
g(x)

)
.

Gaussian + Selective kNN.

• The average distance from g(x) to its k nearest neighbors among the train

feature vectors {g(xi )}Ni=1 is taken as the uncertainty score, κf (x) = kNN
(
g(x)

)
.

Gaussian + Selective Variance.

Gaussian Ensemble + Selective GMM.

Gaussian Ensemble + Selective Ensemble Variance
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9. Results - Common Uncertainty Estimation Methods - Synthetic
Published in Transactions on Machine Learning Research (09/2023)
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Figure 2: Results for the five common regression uncertainty estimation methods (which output predictions
and corresponding 90% prediction intervals for all inputs), on the six synthetic datasets. Top: Results in
terms of our main metric test coverage. A perfectly calibrated method would achieve a test coverage of
exactly 90%, as indicated by the solid line. Bottom: Results in terms of average val interval length.

et al., 2022) evaluate uncertainty calibration, they also just consider the classification setting. In contrast,
evaluation of uncertainty estimation methods is our main focus, and we do this specifically for regression.

The main sources of inspiration for our work are (Koh et al., 2021) and (Ovadia et al., 2019). While Koh et al.
(2021) propose an extensive benchmark with various real-world distribution shifts, it only contains a single
regression dataset. Moreover, methods are evaluated solely in terms of predictive performance. Ovadia et al.
(2019) perform a comprehensive evaluation of uncertainty estimation methods under distribution shifts, but
only consider classification tasks. Inspired by this, we thus propose our benchmark for evaluating reliability
of uncertainty estimation methods under real-world distribution shifts in the regression setting. Most similar
to our work is that of Malinin et al. (2021). However, their benchmark contains just two regression datasets
(tabular weather prediction and a complex vehicle motion prediction task), they only evaluate ensemble-based
uncertainty estimation methods, and these methods are not evaluated in terms of calibration.

6 Results

We evaluate the 10 methods specified in Section 4 on all 12 datasets from Section 3.1, according to the
evaluation procedure described in Section 3.2. For each method we train 20 models, randomly select 5 of
them for evaluation and report the averaged metrics. For the ensemble methods, we construct an ensemble
by randomly selecting M = 5 out of the 20 trained models, evaluate the ensemble and then repeat this 5
times in total. To ensure that the results do not depend on our specific choice of α = 0.1, we also evaluate
methods with two alternative miscoverage rates. While the main paper only contains results for α = 0.1, we
repeat most of the evaluation for α = 0.2 and α = 0.05 in Appendix ??, observing very similar trends overall.

6.1 Common Uncertainty Estimation Methods

We start by evaluating the first five methods from Section 4, those which output predictions and corresponding
90% prediction intervals for all inputs. The results in terms of our main metric test coverage are presented in
the upper part of Figure 2 for the synthetic datasets, and in Figure 3 for the six real-world datasets. In the

9

38/46



9. Results - Common Uncertainty Estimation Methods - Synthetic
Published in Transactions on Machine Learning Research (09/2023)

Distribution Shift Intensity

te
st

C
ov

er
ag

e

0 (Cells) 1 2 3 4 (Cells-Tails)

0.5
0.6
0.7
0.8

1
0.9

Distribution Shift Intensity

te
st

C
ov

er
ag

e

0 (ChairAngle) 1 2 3 4 (ChairAngle-Gap)

0.5
0.6
0.7
0.8

1
0.9

Figure 4: Test coverage results for the five common regression uncertainty estimation methods, on synthetic
datasets with increasing degrees of distribution shifts. Top: From Cells (no distribution shift) to Cells-
Tails (maximum distribution shift). Bottom: From ChairAngle to ChairAngle-Gap.

Since the average interval lengths vary a lot between different datasets, Figure 2 & 3 only show relative
comparisons of the methods. For absolute numerical scales, see Table ?? - Table ??.

To further study how the test coverage performance is affected by distribution shifts, we also apply the five
methods to three additional variants of the Cells dataset. Cells has no difference in regression target
range between train/val and test, whereas for Cells-Tails the target range is ]50, 150] for train/val and
[1, 200] for test. By creating three variants with intermediate target ranges, we thus obtain a sequence of five
datasets with increasing degrees of distribution shifts, starting with Cells (no distribution shift) and ending
with Cells-Tails (maximum distribution shift). The test coverage results on this sequence of datasets are
presented in the upper part of Figure 4. We observe that as the degree of distribution shift is increased
step-by-step, the test coverage also drops accordingly. The lower part of Figure 4 presents the results of
a similar experiment, in which we construct a sequence of five datasets starting with ChairAngle (no
distribution shift) and ending with ChairAngle-Gap (maximum distribution shift). Also in this case, we
observe that the test coverage drops step-by-step along with the increased degree of distribution shift.

A study of the relative performance of the five methods on the real-world datasets, in terms of all three metrics
(test coverage, average val interval length, val MAE), is finally presented in Figure ?? - Figure ?? in the
appendix. One can clearly observe that Ensemble and Gaussian Ensemble achieve the best performance,
thus indicating that ensembling multiple models indeed helps to improve the performance.

6.2 Selective Prediction Methods

Next, we evaluate the methods with an added selective prediction mechanism. We start with the three
methods based on Gaussian. The results in terms of test coverage and test prediction rate are available
in Figure 5 for the synthetic datasets, and in Figure 6 for the six real-world datasets. While a complete
evaluation of these methods also should include the average val interval length, we note that the selective
prediction mechanism does not modify the intervals of the underlying Gaussian method (which already has
been evaluated in terms of interval length in Section 6.1). Here, we therefore focus on the test coverage and
test prediction rate. Complete numerical results are provided in Table ?? - Table ?? in the appendix.
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9. Results - Common Uncertainty Estimation Methods - Real-World
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Figure 3: Results for the five common regression uncertainty estimation methods (which output predictions
and corresponding 90% prediction intervals for all inputs), on the six real-world datasets. Top: Results in
terms of our main metric test coverage. Bottom: Results in terms of average val interval length.

lower parts of Figure 2 & 3, results in terms of average val interval length are presented. The complete results,
including our other secondary metric val MAE, are provided in Table ?? - Table ?? in the appendix. Please
note that, because we utilize a new benchmark consisting of custom datasets, we are not able to directly
compare the MAE of our models with that of any previous work from the literature.

In Figure 2, the test coverage results on the first synthetic dataset Cells are found in the upper-left. As
there is no distribution shift between train/val and test for this dataset, we use it as a baseline. We observe
that all five methods have almost perfectly calibrated prediction intervals, i.e. they all obtain a test coverage
very close to 90%. This is exactly the desired behaviour. On Cells-Tails however, on which we introduced
a clear distribution shift, we observe in Figure 2 that the test coverage drops dramatically from the desired
90% for all five methods. Even the state-of-the-art uncertainty estimation method Gaussian Ensemble
here becomes highly overconfident, as its test coverage drops down to ≈ 59%. On Cells-Gap, the test
coverages are slightly closer to 90%, but all five methods are still highly overconfident. On the other synthetic
dataset ChairAngle, we observe in Figure 2 that all five methods have almost perfectly calibrated prediction
intervals. However, as we introduce clear distribution shifts on ChairAngle-Tails and ChairAngle-Gap,
we can observe that the test coverage once again drops dramatically for all methods.

The results on the six real-world datasets are found in Figure 3. In the upper part, we observe that all
five methods have quite well-calibrated prediction intervals on AssetWealth and BrainTumourPixels,
even though they all are consistently somewhat overconfident (test coverages of 82%-89%). On the four
remaining datasets, the methods are in general more significantly overconfident. On VentricularVolume,
we observe test coverages of 60%-80% for all methods, and on SkinLesionPixels the very best coverage
is ≈ 82%. On HistologyNucleiPixels, most methods only obtain test coverages of 55%-70%, and on
AerialBuildingPixels the very best coverage is ≈ 81%. In fact, not a single method actually reaches the
desired 90% test coverage on any of these real-world datasets.

In terms of average val interval length, we observe in the lower parts of Figure 2 & 3 that Ensemble
consistently produces smaller prediction intervals than Conformal Prediction. Moreover, the intervals of
Gaussian Ensemble are usually smaller than those of Gaussian. When comparing the interval lengths
of Quantile Regression and Gaussian, we observe no clear trend that is consistent across all datasets.

10

40/46



9. Results - Selective Prediction Methods - Synthetic Datasets
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Figure 5: Results for the three selective prediction methods based on Gaussian, on the six synthetic datasets.
Top: Results in terms of our main metric test coverage. Bottom: Results in terms of test prediction rate
(the proportion of test inputs for which a prediction actually is output).

In the upper part of Figure 5, we observe that selective prediction based on feature-space density significantly
improves the test coverage of Gaussian on the synthetic datasets. While Gaussian has well-calibrated
prediction intervals only on Cells and ChairAngle, which are baseline datasets without any distribution
shift, Gaussian + Selective GMM is almost perfectly calibrated across all six datasets. On Cells-Tails,
for example, it improves the test coverage from ≈ 54% up to ≈ 89%. Gaussian + Selective kNN also
significantly improves the test coverages, but not quite to the same extent. In the lower part of Figure 5, we
can observe that when Gaussian + Selective GMM significantly improves the test coverage, there is also
a clear drop in its test prediction rate. For example, the prediction rate drops from ≈ 0.95 on Cells down to
≈ 0.54 on Cells-Tails. By rejecting nearly 50% of all inputs as OOD in this case, Gaussian + Selective
GMM can thus remain well-calibrated on the subset of test it actually outputs predictions for. In Figure 5,
we also observe that Gaussian + Selective Variance only marginally improves the test coverage.

While Gaussian + Selective GMM significantly improves the test coverage of Gaussian and has well-
calibrated prediction intervals across the synthetic datasets, we observe in Figure 6 that this is not true for
the six real-world datasets. Gaussian + Selective GMM does consistently improve the test coverage, but
only marginally, and it still suffers from significant overconfidence in many cases. On VentricularVolume,
for example, the test prediction rate of Gaussian + Selective GMM is as low as ≈ 0.71, but the test
coverage only improves from ≈ 73% to ≈ 75% compared to Gaussian.

For the two methods based on Gaussian Ensemble, the results are presented in Figure ?? & ?? in the
appendix. Overall, we observe very similar trends. Gaussian Ensemble + Selective GMM significantly
improves the test coverage of Gaussian Ensemble and is almost perfectly calibrated across the synthetic
datasets. However, when it comes to the real-world datasets, it often remains significantly overconfident.

Finally, Figure ?? presents a relative comparison of the five selective prediction methods across all 12 datasets,
in terms of average test coverage error (absolute difference between empirical and expected interval coverage)
and average test prediction rate. We observe that Gaussian Ensemble + Selective GMM achieves the
best test coverage error, but also has the lowest test prediction rate. In fact, each improvement in terms of
test coverage error also corresponds to a decrease in test prediction rate for these five methods, meaning that
there seems to be an inherent trade-off between the two metrics.
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Figure 6: Results for the three selective prediction methods based on Gaussian, on the six real-world datasets.
Top: Results in terms of test coverage. Bottom: Results in terms of test prediction rate.

7 Discussion

Let us now analyze the results from Section 6 in more detail, and discuss what we consider the most important
findings and insights. First of all, we can observe that among the 10 considered methods, not a single one was
close to producing perfectly calibrated prediction intervals across all 12 datasets. We thus conclude that our
proposed benchmark indeed is challenging and interesting. Moreover, the results in Figure 2 & 3 demonstrate
that while common uncertainty estimation methods are well calibrated when there is no distribution shift
(Cells and ChairAngle), they can all break down and become highly overconfident in many realistic
scenarios. This highlights the importance of employing sufficiently realistic and thus challenging benchmarks
when evaluating uncertainty estimation methods. Otherwise, we might be lead to believe that methods will
be more reliable during practical deployment than they actually are.

Coverage Guarantees Might Instill a False Sense of Security We also want to emphasize that
Conformal Prediction and Quantile Regression2 have theoretical coverage guarantees, but still are
observed to become highly overconfident for many datasets in Figure 2 & 3. Since the guarantees depend on
the assumption that all data points are exchangeable (true for i.i.d. data, for instance), which generally does
not hold under distribution shifts, these results should actually not be surprising. The results are however a
good reminder that we always need to be aware of the underlying assumptions, and whether or not they are
likely to hold in common practical applications. Otherwise, such theoretical guarantees might just instill a
false sense of security, making us trust methods more than we actually should.

Clear Performance Differences between Synthetic and Real-World Datasets We find it interesting
that selective prediction based on feature-space density, in particular Gaussian + Selective GMM, works
almost perfectly in terms of test coverage across the synthetic datasets (Figure 5), but fails to give significant
improvements on the real-world datasets (Figure 6). The results on VentricularVolume are particularly
interesting, as the prediction rate drops quite a lot without significantly improving the test coverage. This
means that while a relatively large proportion of the test inputs are deemed OOD and thus rejected by
the method, the test coverage is barely improved. On the synthetic datasets, there is a corresponding
improvement in test coverage whenever the prediction rate drops significantly (Figure 5). It is not clear

2Since all prediction intervals are calibrated on val, we are using Conformalized Quantile Regression (Romano et al., 2019).
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10. Main Actionable Takeaways

(1/4) All methods are well calibrated on baseline datasets with no distribution shift,

but become highly overconfident in many realistic scenarios. Uncertainty estimation

methods must therefore be evaluated using sufficiently challenging benchmarks.

Otherwise, one might be lead to believe that methods will be more reliable during

real-world deployment than they actually are.

(2/4) Conformal prediction methods have commonly promoted theoretical coverage

guarantees, but these depend on an assumption that is unlikely to hold in many

practical applications. Consequently, also these methods can become highly

overconfident in realistic scenarios. If the underlying assumptions are not examined

critically by practitioners, such theoretical guarantees risk instilling a false sense of

security – making these models even less suitable for safety-critical deployment.
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10. Main Actionable Takeaways

(3/4) The clear performance difference between synthetic and real-world datasets

observed for selective prediction methods based on feature-space density is a very

interesting direction for future work. If the reasons for this performance gap can be

understood, an uncertainty estimation method that stays well calibrated across all

datasets could potentially be developed.

(4/4) Selective prediction methods based on feature-space density perform well

relative to other methods (as expected based on their state-of-the-art OOD detection

performance), but are also overconfident in many cases. Only comparing the relative

performance of different methods is therefore not sufficient. To track if actual progress

is being made towards the ultimate goal of truly reliable uncertainty estimation

methods, benchmarks must also evaluate method performance in an absolute sense.
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Summary of Contributions (Repetition)

How Reliable is Your Regression Model’s Uncertainty Under Real-World Distribution Shifts?

Fredrik K. Gustafsson, Martin Danelljan, Thomas B. Schön

Transactions on Machine Learning Research (TMLR), 2023

• We propose a benchmark for testing the reliability of regression uncertainty

estimation methods under real-world distribution shifts.

• We then employ our benchmark to evaluate many of the most common

uncertainty estimation methods, as well as two state-of-the-art uncertainty scores

from out-of-distribution detection.

• We find that while all methods are well calibrated when there is no distribution

shift, they become highly overconfident on many of the benchmark datasets –

thus uncovering important limitations of current methods.

• This demonstrates that more work is required in order to develop truly reliable

uncertainty estimation methods for regression.
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