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We propose DCTD, a general regression method with a clear probabilistic interpretation.

When applied for bounding box regression, DCTD sets a new state-of-the-art on the task of

generic visual object tracking.

1/25



Generic visual object tracking: given any target object defined by a bounding box in

the first frame of a video, estimate its bounding box in all subsequent video frames.
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1. Background: regression using deep neural networks

Supervised regression: learn to predict a continuous target value y? ∈ Y = RK

from a corresponding input x? ∈ X , given a training set D of i.i.d. input-target

examples, D = {(xi , yi )}Ni=1, (xi , yi ) ∼ p(x , y).

Deep neural network (DNN): a function fθ : U → O, parameterized by θ ∈ RP ,

that maps an input u ∈ U to an output fθ(u) ∈ O.

5/25



1. Background: regression using deep neural networks

Supervised regression: learn to predict a continuous target value y? ∈ Y = RK

from a corresponding input x? ∈ X , given a training set D of i.i.d. input-target

examples, D = {(xi , yi )}Ni=1, (xi , yi ) ∼ p(x , y).

Deep neural network (DNN): a function fθ : U → O, parameterized by θ ∈ RP ,

that maps an input u ∈ U to an output fθ(u) ∈ O.

5/25



1.1 Direct regression

Direct regression: train a DNN fθ : X → Y to directly predict the target, y? = fθ(x?).

The DNN model parameters θ are learned by minimizing a loss function `(fθ(xi ), yi ),

penalizing discrepancy between the prediction fθ(xi ) and the ground truth yi :

J(θ) =
1

N

N∑
i=1

`(fθ(xi ), yi ), θ = argmin
θ′

J(θ′).

The most common choices for ` are the L2 loss, `(ŷ , y) = ‖ŷ − y‖2
2, and the L1 loss.

Minimizing J(θ) then corresponds to minimizing the negative log-likelihood∑N
i=1− log p(yi |xi ; θ), for a specific model p(y |x ; θ) of the conditional target density.

For example, the L2 loss corresponds to a fixed-variance Gaussian model (1D case):

p(y |x ; θ) = N (y ; fθ(x), σ2).
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1.2 Probabilistic regression

Why not explicitly employ this probabilistic perspective and try to create more flexible

models p(y |x ; θ) of the conditional target density p(y |x)?

Probabilistic regression: train a DNN fθ : X → O to predict the parameters φ of a

certain family of probability distributions p(y ;φ), then model p(y |x) with:

p(y |x ; θ) = p(y ;φ(x)), φ(x) = fθ(x).

The DNN model parameters θ are learned by minimizing
∑N

i=1− log p(yi |xi ; θ).

For example, a general 1D Gaussian model can be realized as:

p(y |x ; θ) = N
(
y ;µθ(x), σ2

θ(x)
)
, fθ(x) = [µθ(x) log σ2

θ(x) ]T ∈ R2.

The negative log-likelihood
∑N

i=1− log p(yi |xi ; θ) then corresponds to the loss:

J(θ) =
1

N

N∑
i=1

(yi − µθ(xi ))2

σ2
θ(xi )

+ log σ2
θ(xi ).
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1.3 Confidence-based regression

The quest for improved regression accuracy has also led to the development of more

specialized methods, achieving state-of-the-art performance within computer vision.

Confidence-based regression: train a DNN fθ : X × Y → R to predict a scalar

confidence value fθ(x , y), and maximize this quantity over y to predict the target:

y? = argmax
y

fθ(x?, y)

The DNN model parameters θ are learned by generating pseudo ground truth

confidence values c(xi , yi , y), and minimizing a loss function `
(
fθ(xi , y), c(xi , yi , y)

)
.

Commonly employed for image-coordinate regression, e.g. human pose estimation [11],

where the DNN predicts a 2D confidence heatmap over image-coordinates y . Recently,

the approach was also employed by IoU-Net [4] for bounding box regression in object

detection, which in turn was utilized by the ATOM [3] visual tracker.

8/25



1.3 Confidence-based regression

The quest for improved regression accuracy has also led to the development of more

specialized methods, achieving state-of-the-art performance within computer vision.

Confidence-based regression: train a DNN fθ : X × Y → R to predict a scalar

confidence value fθ(x , y), and maximize this quantity over y to predict the target:

y? = argmax
y

fθ(x?, y)

The DNN model parameters θ are learned by generating pseudo ground truth

confidence values c(xi , yi , y), and minimizing a loss function `
(
fθ(xi , y), c(xi , yi , y)

)
.

Commonly employed for image-coordinate regression, e.g. human pose estimation [11],

where the DNN predicts a 2D confidence heatmap over image-coordinates y . Recently,

the approach was also employed by IoU-Net [4] for bounding box regression in object

detection, which in turn was utilized by the ATOM [3] visual tracker.

8/25



1.3 Confidence-based regression

The quest for improved regression accuracy has also led to the development of more

specialized methods, achieving state-of-the-art performance within computer vision.

Confidence-based regression: train a DNN fθ : X × Y → R to predict a scalar

confidence value fθ(x , y), and maximize this quantity over y to predict the target:

y? = argmax
y

fθ(x?, y)

The DNN model parameters θ are learned by generating pseudo ground truth

confidence values c(xi , yi , y), and minimizing a loss function `
(
fθ(xi , y), c(xi , yi , y)

)
.

Commonly employed for image-coordinate regression, e.g. human pose estimation [11],

where the DNN predicts a 2D confidence heatmap over image-coordinates y . Recently,

the approach was also employed by IoU-Net [4] for bounding box regression in object

detection, which in turn was utilized by the ATOM [3] visual tracker.

8/25



1.3 Confidence-based regression

The quest for improved regression accuracy has also led to the development of more

specialized methods, achieving state-of-the-art performance within computer vision.

Confidence-based regression: train a DNN fθ : X × Y → R to predict a scalar

confidence value fθ(x , y), and maximize this quantity over y to predict the target:

y? = argmax
y

fθ(x?, y)

The DNN model parameters θ are learned by generating pseudo ground truth

confidence values c(xi , yi , y), and minimizing a loss function `
(
fθ(xi , y), c(xi , yi , y)

)
.

Commonly employed for image-coordinate regression, e.g. human pose estimation [11],

where the DNN predicts a 2D confidence heatmap over image-coordinates y .

Recently,

the approach was also employed by IoU-Net [4] for bounding box regression in object

detection, which in turn was utilized by the ATOM [3] visual tracker.

8/25



1.3 Confidence-based regression

The quest for improved regression accuracy has also led to the development of more

specialized methods, achieving state-of-the-art performance within computer vision.

Confidence-based regression: train a DNN fθ : X × Y → R to predict a scalar

confidence value fθ(x , y), and maximize this quantity over y to predict the target:

y? = argmax
y

fθ(x?, y)

The DNN model parameters θ are learned by generating pseudo ground truth

confidence values c(xi , yi , y), and minimizing a loss function `
(
fθ(xi , y), c(xi , yi , y)

)
.

Commonly employed for image-coordinate regression, e.g. human pose estimation [11],

where the DNN predicts a 2D confidence heatmap over image-coordinates y . Recently,

the approach was also employed by IoU-Net [4] for bounding box regression in object

detection, which in turn was utilized by the ATOM [3] visual tracker.

8/25



Outline

1. Background: regression using deep neural networks

1.1 Direct regression

1.2 Probabilistic regression

1.3 Confidence-based regression

2. Deep Conditional Target Densities (DCTD) for accurate regression

2.1 Training

2.2 Prediction

3. Experiments

3.1 Age estimation, head-pose estimation, object detection

3.2 Generic visual object tracking

9/25



2. Deep Conditional Target Densities (DCTD) for accurate regression

While confidence-based regression methods have demonstrated impressive results,

they require important task-dependent design choices (e.g. how to generate the

pseudo ground truth labels) and usually lack a clear probabilistic interpretation.

In

contrast, the framework of probabilistic regression is straightforward and generally

applicable, but can usually not compete in terms of regression accuracy.

With DCTD, we aim to combine the benefits of these two approaches.

Deep Conditional Target Densities (DCTD): train a DNN fθ : X × Y → R
to predict a scalar value fθ(x , y), then model p(y |x) with:

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,y)dy .

The DNN model parameters θ are learned by minimizing
∑N

i=1− log p(yi |xi ; θ).
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2.1 Training

Deep Conditional Target Densities (DCTD):

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,y)dy .

The DNN model parameters θ are learned by minimizing
∑N

i=1− log p(yi |xi ; θ).

Training thus requires the evaluation of Z (x , θ), we employ importance sampling:

− log p(yi |xi ; θ) = log

(∫
efθ(xi ,y)dy

)
− fθ(xi , yi )

= log

(∫
efθ(xi ,y)

q(y)
q(y)dy

)
− fθ(xi , yi )

≈ log

(
1

M

M∑
k=1

efθ(xi ,y
(k))

q(y (k))

)
− fθ(xi , yi ), y (k) ∼ q(y).
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efθ(xi ,y)

q(y)
q(y)dy

)
− fθ(xi , yi )

≈ log

(
1

M

M∑
k=1

efθ(xi ,y
(k))

q(y (k))

)
− fθ(xi , yi ), y (k) ∼ q(y).

11/25



2.1 Training

Deep Conditional Target Densities (DCTD):

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,y)dy .

The DNN model parameters θ are learned by minimizing
∑N

i=1− log p(yi |xi ; θ).

− log p(yi |xi ; θ) ≈ log

(
1

M

M∑
k=1

efθ(xi ,y
(k))

q(y (k))

)
− fθ(xi , yi ), y (k) ∼ q(y).

We use a proposal distribution q(y) = q(y |yi ) = 1
L

∑L
l=1N (y ; yi , σ

2
l ) that depends on

the ground truth target yi . The final minimization objective J(θ) is thus given by:

J(θ) =
1

N

N∑
i=1

log

(
1

M

M∑
m=1

efθ(xi ,y
(i,m))

q(y (i ,m)|yi )

)
− fθ(xi , yi ), {y (i ,m)}Mm=1 ∼ q(y |yi ).

12/25



2.1 Training

Deep Conditional Target Densities (DCTD):

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,y)dy .

The DNN model parameters θ are learned by minimizing
∑N

i=1− log p(yi |xi ; θ).

− log p(yi |xi ; θ) ≈ log

(
1

M

M∑
k=1

efθ(xi ,y
(k))

q(y (k))

)
− fθ(xi , yi ), y (k) ∼ q(y).

We use a proposal distribution q(y) = q(y |yi ) = 1
L

∑L
l=1N (y ; yi , σ

2
l ) that depends on

the ground truth target yi .

The final minimization objective J(θ) is thus given by:

J(θ) =
1

N

N∑
i=1

log

(
1

M

M∑
m=1

efθ(xi ,y
(i,m))

q(y (i ,m)|yi )

)
− fθ(xi , yi ), {y (i ,m)}Mm=1 ∼ q(y |yi ).

12/25



2.1 Training

Deep Conditional Target Densities (DCTD):

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,y)dy .

The DNN model parameters θ are learned by minimizing
∑N

i=1− log p(yi |xi ; θ).

− log p(yi |xi ; θ) ≈ log

(
1

M

M∑
k=1

efθ(xi ,y
(k))

q(y (k))

)
− fθ(xi , yi ), y (k) ∼ q(y).

We use a proposal distribution q(y) = q(y |yi ) = 1
L

∑L
l=1N (y ; yi , σ

2
l ) that depends on

the ground truth target yi . The final minimization objective J(θ) is thus given by:

J(θ) =
1

N

N∑
i=1

log

(
1

M

M∑
m=1

efθ(xi ,y
(i,m))

q(y (i ,m)|yi )

)
− fθ(xi , yi ), {y (i ,m)}Mm=1 ∼ q(y |yi ).

12/25



2.1 Training - Illustrative toy example

The DCTD model p(y |x ; θ) = efθ(x ,y)/Z (x , θ) is highly flexible and can learn complex

target densities directly from data, including multi-modal and asymmetric densities.

Figure 4: An illustrative 1D regression problem. The training data {(xi , yi )}2000
i=1 is generated

by the ground truth conditional target density p(y |x).
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2.2 Prediction

Deep Conditional Target Densities (DCTD): train a DNN fθ : X × Y → R
to predict a scalar value fθ(x , y), then model p(y |x) with:

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,y)dy .

Given an input x? at test time, we predict the target y? by maximizing p(y |x?; θ):

y? = argmax
y

p(y |x?; θ) = argmax
y

fθ(x?, y).

By designing the DNN fθ to be differentiable w.r.t. targets y , the gradient ∇y fθ(x?, y)

can be efficiently evaluated using auto-differentiation. We can thus perform gradient

ascent to find a local maximum of fθ(x?, y), starting from an initial estimate ŷ .
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3. Experiments

We evaluate DCTD on four diverse computer vision regression tasks: age estimation,

head-pose estimation, object detection and generic visual object tracking.

DCTD outperforms the confidence-based IoU-Net [4] method for bounding box

regression in direct comparisons, both when applied in object detection on the COCO

dataset [6], and in the state-of-the-art ATOM [3] visual tracker.

(IoU-Net trains a DNN fθ : X ×Y → R to predict the IoU overlap between a bounding

box y and the corresponding ground truth yi . For training, boxes are sampled around

yi and the difference between predicted and true IoU is minimized. For prediction, an

initial estimate ŷ is refined using gradient-based maximization of the predicted IoU.)
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3.1 Age estimation

Age estimation: refinement using DCTD consistently improves MAE (lower is better)

for the age predictions outputted by a number of baselines.

+DCTD Cao et al. [2] Direct Gaussian Laplace Softmax (CE, L2) Softmax (CE, L2, Var)

5.47 ± 0.01 4.81 ± 0.02 4.79 ± 0.06 4.85 ± 0.04 4.78 ± 0.05 4.81 ± 0.03

X - 4.65 ± 0.02 4.66 ± 0.04 4.81 ± 0.04 4.65 ± 0.04 4.69 ± 0.03
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3.1 Head-pose estimation

Head-pose estimation: refinement using DCTD consistently improves the average

MAE for Yaw, Pitch and Roll for the predicted pose outputted by our baselines.

+DCTD Yang et al. [12] Direct Gaussian Laplace Softmax (CE, L2) Softmax (CE, L2, Var)

3.60 3.09 ± 0.07 3.12 ± 0.08 3.21 ± 0.06 3.04 ± 0.08 3.15 ± 0.07

X - 3.07 ± 0.07 3.11 ± 0.07 3.19 ± 0.06 3.01 ± 0.07 3.11 ± 0.06
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3.1 Object detection

Object detection: when applied to refine the Faster-RCNN detections on COCO [6],

DCTD both improves the original detections and outperforms the IoU-Net refinement.

Formulation Direct Gaussian Laplace Confidence Confidence DCTD

Approach Faster-RCNN [10] IoU-Net [4] IoU-Net†

AP (%) 37.2 36.7 37.1 38.3 38.2 39.1

AP50(%) 59.2 58.7 59.1 58.3 58.4 58.5

AP75(%) 40.3 39.6 40.2 41.4 41.4 41.8
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3.2 Generic visual object tracking

Generic visual object tracking: given any target object defined by a bounding box in

the first frame of a video, estimate its bounding box in all subsequent video frames.

ATOM [3] trains a classifier online to first roughly localize the target object in a new

frame. Its bounding box is then estimated by using an IoU-Net, trained offline, to

refine this initial estimate.

Video: https://youtu.be/UP_eLvwskzU
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3.2 Generic visual object tracking - Results

Results: when applied to refine the initial estimate provided by the classifier in ATOM,

DCTD outperforms the original method (which uses IoU-Net for refinement). DCTD

also outperforms other state-of-the-art trackers.

Dataset Metric SiamFC MDNet DaSiamRPN SiamRPN++ ATOM ATOM† DCTD

[1] [9] [13] [5] [3]

TrackingNet [7] Precision (%) 53.3 56.5 59.1 69.4 64.8 66.7 68.9

Norm. Prec. (%) 66.6 70.5 73.3 80.0 77.1 78.3 79.5

Success (%) 57.1 60.6 63.8 73.3 70.3 72.1 73.7

UAV123 [8] OP0.50 (%) - - 73.6 75∗ 78.9 79.6 80.1

OP0.75 (%) - - 41.1 56∗ 55.7 56.0 59.8

AUC (%) - 52.8 58.4 61.3 65.0 65.0 66.5
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3.2 Generic visual object tracking - Qualitative results

Qualitative results for DCTD:

https://youtu.be/AAnr0g38UeA

https://youtu.be/JyhgUYpwQ5c
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