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Outline

Energy-based models.

Energy-based models for regression.

How to train energy-based models for regression.

• Noise contrastive estimation (NCE).

Energy-based regression for 3D object detection.

Practical limitations of energy-based regression.

Learning proposals for more practical energy-based regression.
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Energy-Based Models

Energy-based models have a rich history within machine learning.

An energy-based model (EBM) specifies a probability distribution p(x ; θ) over

x ∈ X directly via a parameterized scalar function fθ : X → R:

p(x ; θ) =
efθ(x)

Z (θ)
, Z (θ) =

∫
efθ(x̃)dx̃

By defining fθ(x) using a deep neural network (DNN), the EBM p(x ; θ) becomes

expressive enough to learn practically any distribution from observed data.

EBMs have therefore become increasingly popular within computer vision in recent

years, commonly being applied for various generative image modeling tasks.

3/35



Energy-Based Models

Energy-based models have a rich history within machine learning.

An energy-based model (EBM) specifies a probability distribution p(x ; θ) over

x ∈ X directly via a parameterized scalar function fθ : X → R:

p(x ; θ) =
efθ(x)

Z (θ)
, Z (θ) =

∫
efθ(x̃)dx̃

By defining fθ(x) using a deep neural network (DNN), the EBM p(x ; θ) becomes

expressive enough to learn practically any distribution from observed data.

EBMs have therefore become increasingly popular within computer vision in recent

years, commonly being applied for various generative image modeling tasks.

3/35



Energy-Based Models

Energy-based models have a rich history within machine learning.

An energy-based model (EBM) specifies a probability distribution p(x ; θ) over

x ∈ X directly via a parameterized scalar function fθ : X → R:

p(x ; θ) =
efθ(x)

Z (θ)
, Z (θ) =

∫
efθ(x̃)dx̃

By defining fθ(x) using a deep neural network (DNN), the EBM p(x ; θ) becomes

expressive enough to learn practically any distribution from observed data.

EBMs have therefore become increasingly popular within computer vision in recent

years, commonly being applied for various generative image modeling tasks.

3/35



Energy-Based Models

An EBM specifies a probability distribution p(x ; θ) directly via a parameterized

scalar function fθ(x),

p(x ; θ) =
efθ(x)

Z (θ)
, Z (θ) =

∫
efθ(x̃)dx̃ ,

where fθ(x) commonly is defined using a DNN.

The EBM p(x ; θ) = efθ(x)/
∫
efθ(x̃)dx̃ is thus a highly expressive model that puts

minimal restricting assumptions on the true distribution p(x).

Drawback: the normalizing partition function Z (θ) =
∫
efθ(x̃)dx̃ is intractable, which

complicates evaluating or sampling from the EBM p(x ; θ).

Compare with normalizing flow models which are specifically designed to be easy to

both evaluate and sample. EBMs instead prioritize maximum model expressivity.

4/35



Energy-Based Models

An EBM specifies a probability distribution p(x ; θ) directly via a parameterized

scalar function fθ(x),

p(x ; θ) =
efθ(x)

Z (θ)
, Z (θ) =

∫
efθ(x̃)dx̃ ,

where fθ(x) commonly is defined using a DNN.

The EBM p(x ; θ) = efθ(x)/
∫
efθ(x̃)dx̃ is thus a highly expressive model that puts

minimal restricting assumptions on the true distribution p(x).

Drawback: the normalizing partition function Z (θ) =
∫
efθ(x̃)dx̃ is intractable, which

complicates evaluating or sampling from the EBM p(x ; θ).

Compare with normalizing flow models which are specifically designed to be easy to

both evaluate and sample. EBMs instead prioritize maximum model expressivity.

4/35



Energy-Based Models

An EBM specifies a probability distribution p(x ; θ) directly via a parameterized

scalar function fθ(x),

p(x ; θ) =
efθ(x)

Z (θ)
, Z (θ) =

∫
efθ(x̃)dx̃ ,

where fθ(x) commonly is defined using a DNN.

The EBM p(x ; θ) = efθ(x)/
∫
efθ(x̃)dx̃ is thus a highly expressive model that puts

minimal restricting assumptions on the true distribution p(x).

Drawback: the normalizing partition function Z (θ) =
∫
efθ(x̃)dx̃ is intractable, which

complicates evaluating or sampling from the EBM p(x ; θ).

Compare with normalizing flow models which are specifically designed to be easy to

both evaluate and sample. EBMs instead prioritize maximum model expressivity.

4/35



Energy-Based Models

An EBM specifies a probability distribution p(x ; θ) directly via a parameterized

scalar function fθ(x),

p(x ; θ) =
efθ(x)

Z (θ)
, Z (θ) =

∫
efθ(x̃)dx̃ ,

where fθ(x) commonly is defined using a DNN.

The EBM p(x ; θ) = efθ(x)/
∫
efθ(x̃)dx̃ is thus a highly expressive model that puts

minimal restricting assumptions on the true distribution p(x).

Drawback: the normalizing partition function Z (θ) =
∫
efθ(x̃)dx̃ is intractable, which

complicates evaluating or sampling from the EBM p(x ; θ).

Compare with normalizing flow models which are specifically designed to be easy to

both evaluate and sample. EBMs instead prioritize maximum model expressivity. 4/35



Energy-Based Probabilistic Regression

While EBMs recently had become increasingly popular within computer vision, they

were basically only being employed for generative image modeling.

In [Paper I] Energy-Based Models for Deep Probabilistic Regression, we instead

explored the application of EBMs to various regression problems.

Regression: learn to predict a continuous target y? ∈ Y = RK from a cor-

responding input x? ∈ X , given a training set D of i.i.d. input-target pairs,

D = {(xi , yi )}Ni=1, (xi , yi ) ∼ p(x , y).
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responding input x? ∈ X , given a training set D of i.i.d. input-target pairs,

D = {(xi , yi )}Ni=1, (xi , yi ) ∼ p(x , y).

We employ a probabilistic regression approach, using a conditional EBM to model the

predictive distribution p(y |x) of the regression target y given the input x:

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .

Here, fθ : X × Y → R is a DNN that maps any input-target pair (x , y) ∈ X × Y
directly to a scalar fθ(x , y) ∈ R, and Z (x , θ) is the input-dependent partition function.
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Energy-Based Probabilistic Regression

Energy-Based Probabilistic Regression: train a DNN fθ : X × Y → R to

predict a scalar fθ(x , y), then model p(y |x) with the conditional EBM p(y |x ; θ):

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .

The EBM p(y |x ; θ) can learn complex distributions p(y |x) directly from data:
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efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .

We have applied the approach to various regression problems within computer vision:

Paper I:

• Age estimation, Y = R.

• Head-pose estimation, Y = R3.

• 2D bounding box regression (object detection, visual tracking), Y = R4.

Paper II:

• 2D bounding box regression (object detection, visual tracking), Y = R4.

8/35



Energy-Based Probabilistic Regression

Energy-Based Probabilistic Regression: train a DNN fθ : X × Y → R to

predict a scalar fθ(x , y), then model p(y |x) with the conditional EBM p(y |x ; θ):

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .
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efθ(x ,ỹ)dỹ .

We have applied the approach to various regression problems within computer vision:

Paper III:

• 3D bounding box regression (3D object detection in LiDAR point clouds), Y = R7.

Paper IV:

• Steering angle prediction, Y = R.

• Cell-count prediction, Y = R.

• Age estimation, Y = R.

• Head-pose estimation, Y = R3.
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Energy-Based Probabilistic Regression - Prediction

Energy-Based Probabilistic Regression: train a DNN fθ : X × Y → R to

predict a scalar fθ(x , y), then model p(y |x) with the conditional EBM p(y |x ; θ):

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .

In Paper I, II & III, we predict the most likely target under the model given an input

x? at test-time, i.e. y? = argmaxy p(y |x?; θ) = argmaxy fθ(x?, y).

In practice, y? = argmaxy fθ(x?, y) is approximated by refining an initial estimate ŷ via

T steps of gradient ascent,
y ← y + λ∇y fθ(x?, y),

thus finding a local maximum of fθ(x?, y). Evaluation of the partition function

Z (x?, θ) is therefore not required.
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Energy-Based Probabilistic Regression - Training

Energy-Based Probabilistic Regression: train a DNN fθ : X × Y → R to

predict a scalar fθ(x , y), then model p(y |x) with the conditional EBM p(y |x ; θ):

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .

The DNN fθ(x , y) can be trained using various methods for fitting a distribution

p(y |x ; θ) to observed data {(xi , yi )}Ni=1.

In general, the most straightforward such method is probably to minimize the negative

log-likelihood L(θ) = −
∑N

i=1 log p(yi |xi ; θ), which for the EBM p(y |x ; θ) is given by,

L(θ) =
N∑
i=1

log

(∫
efθ(xi ,y)dy

)
− fθ(xi , yi ).
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Energy-Based Probabilistic Regression - Training

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .

L(θ) = −
N∑
i=1

log p(yi |xi ; θ) =
N∑
i=1

log

(∫
efθ(xi ,y)dy

)
− fθ(xi , yi ).

The integral
∫
efθ(xi ,y)dy is however intractable, preventing exact evaluation of L(θ).

In [Paper I] Energy-Based Models for Deep Probabilistic Regression, we simply

approximated this intractable integral using importance sampling.
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i=1

log p(yi |xi ; θ) =
N∑
i=1

log

(∫
efθ(xi ,y)dy

)
− fθ(xi , yi ).

Importance sampling:

− log p(yi |xi ; θ) = log

(∫
efθ(xi ,y)dy

)
− fθ(xi , yi )

= log

(∫
efθ(xi ,y)

q(y)
q(y)dy

)
− fθ(xi , yi )

≈ log

(
1

M

M∑
m=1

efθ(xi ,y
(m))

q(y (m))

)
− fθ(xi , yi ), y (m) ∼ q(y).
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Energy-Based Probabilistic Regression - Training

Energy-Based Probabilistic Regression: train a DNN fθ : X × Y → R to

predict a scalar fθ(x , y), then model p(y |x) with the conditional EBM p(y |x ; θ):

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .

Various alternative techniques could however also be employed to train the DNN

fθ(x , y), including noise contrastive estimation (NCE), score matching and MCMC.

In [Paper II] How to Train Your Energy-Based Model for Regression, we thus

studied in detail how EBMs should be trained specifically for regression problems.

We compared six methods on the task of 2D bounding box regression, and concluded

that a simple extension of NCE should be considered the go-to training method.
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that a simple extension of NCE should be considered the go-to training method.
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Energy-Based Probabilistic Regression - Training using NCE

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .

Noise contrastive estimation (NCE) entails learning to discriminate between

observed data examples and samples drawn from a noise distribution.

Specifically, the DNN fθ(x , y) is trained by minimizing JNCE(θ) = − 1
N

∑N
i=1 J

(i)
NCE(θ),

J
(i)
NCE(θ)=log

exp
{
fθ(xi , y

(0)
i )−log q(y

(0)
i )
}

M∑
m=0

exp
{
fθ(xi , y

(m)
i )−log q(y

(m)
i )

} ,
where y

(0)
i , yi , and {y (m)

i }Mm=1 are M samples drawn from a noise distribution q(y).
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(i)
NCE(θ), J

(i)
NCE(θ)=log

exp
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(0)
i )
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M∑
m=0

exp
{
fθ(xi , y

(m)
i )−log q(y

(m)
i )

} ,
y
(0)
i , yi , {y (m)

i }Mm=1 ∼ q(y) (noise distribution).

Effectively, JNCE(θ) is the softmax cross-entropy loss for a classification problem with

M + 1 classes (which of the M + 1 values {y (m)
i }Mm=0 is the true target yi?).

In [Paper II] How to Train Your Energy-Based Model for Regression, the noise

distribution q(y) was set to a mixture of K Gaussians centered at the true target yi ,

q(y) =
1

K

K∑
k=1

N (y ; yi , σ
2
k I ).
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Energy-Based Probabilistic Regression - Training using NCE
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Energy-Based Probabilistic Regression - 3D Object Detection

In [Paper III] Accurate 3D Object Detection using Energy-Based Models, we

extend our energy-based regression approach from 2D to 3D bounding box regression.

This is achieved by designing a differentiable pooling operator for 3D bounding boxes

y ∈ R7, and adding an extra network branch to a state-of-the-art 3D object detector.
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Energy-Based Probabilistic Regression - 3D Object Detection

SA-SSD Pool f(x,y)

y
x

We integrate a conditional EBM p(y |x ; θ) = efθ(x ,y)/
∫
efθ(x ,ỹ)dỹ into the SA-SSD 3D

object detector.

We design a differentiable pooling operator that, given a 3D bounding box y , extracts

a feature vector from the SA-SSD output. This feature vector is processed by

fully-connected layers, outputting fθ(x , y) ∈ R.
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Energy-Based Probabilistic Regression - Practical Limitations

In Paper I, we trained the EBM p(y |x ; θ) by approximating the negative log-likelihood

L(θ) = −
∑N

i=1 log p(yi |xi ; θ) using importance sampling:

J(θ)=
1

N

N∑
i=1

log

(
1

M

M∑
m=1

efθ(xi ,y
(m)
i )

q(y
(m)
i )

)
−fθ(xi , yi ),

{y (m)
i }Mm=1 ∼ q(y) (proposal distribution).
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Energy-Based Probabilistic Regression - Practical Limitations

In Paper II & III, we trained the EBM p(y |x ; θ) using NCE:

JNCE(θ)=− 1

N

N∑
i=1

J
(i)
NCE(θ), J

(i)
NCE(θ)=log

exp
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(m)
i )−log q(y

(m)
i )

} ,
y
(0)
i , yi , {y (m)

i }Mm=1 ∼ q(y) (noise distribution).

In both cases, the proposal/noise distribution q(y) was set to a mixture of K Gaussian

components centered at the true target yi ,

q(y) =
1

K

K∑
k=1

N (y ; yi , σ
2
k I ).
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Energy-Based Probabilistic Regression - Practical Limitations

{y (m)
i }Mm=1 ∼ q(y), q(y) =

1

K

K∑
k=1

N (y ; yi , σ
2
k I )

The proposal/noise distribution q(y) contains hyperparameters K and {σ2k}Kk=1, which

need to be carefully tuned for each specific problem.

The proposal/noise distribution q(y) depends on the true target yi , and can therefore

only be utilized during training.

• To produce a prediction y? at test-time, Paper I, II & III employed gradient

ascent to refine an initial estimate ŷ . However, this prediction strategy then

requires access to good initial estimates.
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Energy-Based Probabilistic Regression - Practical Limitations

q(y) contains task-dependent hyperparameters K and {σ2k}Kk=1.

q(y) depends on the true target yi and can thus only be utilized during training.

In [Paper IV] Learning Proposals for Practical Energy-Based Regression, we

address both these limitations by jointly learning a parameterized proposal/noise

distribution q(y |x ;φ) during EBM training.

We derive an efficient and convenient objective that can be employed to train

q(y |x ;φ) by directly minimizing its KL divergence to the EBM p(y |x ; θ).
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Practical Energy-Based Regression - Learning the Proposal

We want q(y |x ;φ) to be a close approximation of the EBM p(y |x ; θ). Specifically, we

want to find φ that minimizes the KL divergence between q(y |x ;φ) and p(y |x ; θ).

Therefore, we seek to compute ∇φDKL

(
p(y |x ; θ) ‖ q(y |x ;φ)

)
. The gradient ∇φDKL is

generally intractable, but can be conveniently approximated by the following result:

Result 1: For a conditional EBM p(y |x ; θ) = efθ(x ,y)/
∫
efθ(x ,ỹ)dỹ and distribu-

tion q(y |x ;φ),

∇φDKL

(
p ‖ q

)
≈ ∇φ log

(
1

M

M∑
m=1

efθ(x ,y
(m))

q(y (m)|x ;φ)

)
,

where {y (m)}Mm=1 are M independent samples drawn from q(y |x ;φ).
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where {y (m)}Mm=1 are M independent samples drawn from q(y |x ;φ).

Given data {xi}Ni=1, Result 1 implies that the proposal/noise distribution q(y |x ;φ) can

be trained to approximate the EBM p(y |x ; θ) by minimizing the loss,

JKL(φ) =
1

N

N∑
i=1

log

(
1

M

M∑
m=1

efθ(xi ,y
(m)
i )

q(y
(m)
i |xi ;φ)

)
,

where {y (m)
i }Mm=1 ∼ q(y |xi ;φ).
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efθ(x ,ỹ)dỹ and distribu-

tion q(y |x ;φ),

∇φDKL

(
p ‖ q

)
≈ ∇φ log

(
1

M

M∑
m=1

efθ(x ,y
(m))

q(y (m)|x ;φ)

)
,

where {y (m)}Mm=1 are M independent samples drawn from q(y |x ;φ).

Given data {xi}Ni=1, Result 1 implies that the proposal/noise distribution q(y |x ;φ) can

be trained to approximate the EBM p(y |x ; θ) by minimizing the loss,

JKL(φ) =
1

N

N∑
i=1

log

(
1

M

M∑
m=1

efθ(xi ,y
(m)
i )

q(y
(m)
i |xi ;φ)

)
,

where {y (m)
i }Mm=1 ∼ q(y |xi ;φ).

27/35



Practical Energy-Based Regression - Joint Training Method

Given data {xi}Ni=1, Result 1 implies that the proposal/noise distribution q(y |x ;φ)

can be trained to approximate the EBM p(y |x ; θ) by minimizing the loss,

JKL(φ) =
1

N

N∑
i=1

log

(
1

M

M∑
m=1

efθ(xi ,y
(m)
i )

q(y
(m)
i |xi ;φ)

)
,

where {y (m)
i }Mm=1 ∼ q(y |xi ;φ).

Note that JKL(φ) is identical to the first term of the EBM loss J(θ) from Paper I,

J(θ) =
1

N

N∑
i=1

log

(
1

M

M∑
m=1

efθ(xi ,y
(m)
i )

q(y
(m)
i )

)
−fθ(xi , yi ).

J(θ) can thus be used as a joint objective for training both q and the EBM p.
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Practical Energy-Based Regression - Joint Training Method

J(θ, φ) =
1

N

N∑
i=1

log

(
1

M

M∑
m=1

efθ(xi ,y
(m)
i )

q(y
(m)
i |xi ;φ)

)
− fθ(xi , yi ),

{y (m)
i }Mm=1 ∼ q(y |xi ;φ).

The EBM p(y |x ; θ) and proposal q(y |x ;φ) can be trained by jointly minimizing J(θ, φ)

w.r.t. both θ and φ:
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Practical Energy-Based Regression - Joint Training Method

JKL(φ) =
1

N

N∑
i=1

log

(
1

M

M∑
m=1

efθ(xi ,y
(m)
i )

q(y
(m)
i |xi ;φ)

)
,

JNCE(θ)=− 1

N

N∑
i=1

J
(i)
NCE(θ), J

(i)
NCE(θ)=log
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The EBM p(y |x ; θ) and proposal/noise distribution q(y |x ;φ) can also be jointly

trained by updating φ via the loss JKL(φ), and updating θ via JNCE(θ).
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Practical Energy-Based Regression - Utilizing the Proposal

We have access to a proposal q(y |x ;φ) that is conditioned only on the input x and

thus can be utilized also at test-time.

As q(y |x ;φ) has been trained to approximate the EBM p(y |x ; θ), it can be utilized with

self-normalized importance sampling to approximate expectations Ep w.r.t. the EBM,

Ep[ξ(y)]=

∫
ξ(y)p(y |x ; θ)dy ≈

M∑
m=1

w (m)ξ
(
y (m)

)
,

w (m) =
efθ(x ,y

(m))/q(y (m)|x ;φ)∑M
l=1 e

fθ(x ,y (l))/q(y (l)|x ;φ)
,

where {y (m)}Mm=1 ∼ q(y |x ;φ).

Setting ξ(y)=y enables us to approximately compute the EBM mean. In this manner,

we can thus directly produce a stand-alone prediction y? for the EBM p(y |x ; θ).
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Practical Energy-Based Regression - Utilizing the Proposal

w (m) =
efθ(x ,y

(m))/q(y (m)|x ;φ)∑M
l=1 e

fθ(x ,y (l))/q(y (l)|x ;φ)

We can also draw approximate samples from the EBM p(y |x ; θ) by re-sampling with

replacement from the set {y (m)}Mm=1 ∼ q(y |x ;φ) of proposal samples, drawing each

y (m) with probability w (m):
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Summary

Energy-based models.

Energy-based models for regression.

How to train energy-based models for regression.

• Noise contrastive estimation (NCE).

Energy-based regression for 3D object detection.

Practical limitations of energy-based regression.

Learning proposals for more practical energy-based regression.
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