
Predictive Uncertainty Estimation 
with Neural Networks

We need to teach how doubt is not to be feared but welcomed. It’s OK to say, “I don’t know.” 
- Richard P. Feynman
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Types of uncertainty

● In the Bayesian framework, we want our models to capture two different types of uncertainty:

– Epistemic (model) uncertainty: uncertainty in the model parameters.

– Aleatoric (data) uncertainty: inherent and irreducible data noise.
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Epistemic (model) uncertainty

● A large set of model parameters explains the data
(almost) equally well → large epistemic uncertainty.

● Capturing this uncertainty will help mitigate the 
problem of over-confidence for unseen test inputs.
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Aleatoric (data) uncertainty

● Input-dependent aleatoric uncertainty is present whenever we expect the estimated targets to be 
inherently more uncertain for some inputs.
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https://youtu.be/lBtRXW9agTQ

https://youtu.be/lBtRXW9agTQ
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https://youtu.be/KdrHLXpYYlg

https://youtu.be/KdrHLXpYYlg
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Toy regression problem
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Toy regression problem
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Toy regression problem – approach 1

● Directly predict targets using a neural network, find the model parameters by trying to minimize 
the L2 loss (using SGD):
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Toy regression problem – approach 1

● We are able to match the true mean almost perfectly
in the training data interval. 

● Our model does however fail to capture both 
epistemic uncertainty and the input-dependent 
aleatoric uncertainty.
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Toy regression problem – approach 2

● Explicitly model the conditional distribution using a neural network, try to find the MLE of the 
model parameters (using SGD): 

● Obtained predictive distribution:  
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Toy regression problem – approach 2

● Our predictive distribution closely matches the true
conditional distribution in the training data 
interval → captures aleatoric uncertainty.

● Our model does however still become highly 
over-confident outside this interval since it fails to 
capture epistemic uncertainty. 
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Toy regression problem – approach 3

● Instead of MLE, we employ Bayesian inference to obtain a different predictive distribution:

● Implemented using M = 1000 samples obtained via Hamiltonian Monte Carlo (using Pyro). 

● (we also approximate the uniformly weighted mixture of Gaussians one obtains with a single 
Gaussian) 
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Toy regression problem – approach 3

● The estimated uncertainty now also increases
appropriately as the estimated mean diverges from 
the true value outside the training data interval
→ the model does not become over-confident.

● Our model is thus able to estimate both aleatoric 
and epistemic uncertainty. 
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Toy regression problem – approach 4

● Unfortunately, Hamiltonian Monte Carlo (and similar MCMC methods) is not scalable to large 
models and/or datasets.

● Instead, we view ensembling as approximate Bayesian inference to obtain another predictive 
distribution:

● Where                           is obtained by independently training M models with random initialization, 
by trying to minimize the negative log-likelihood (as in approach 2). 

● (we can also add a prior for θ and try to minimize the MAP objective instead) 
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Toy regression problem – approach 4
● M = 4.



17

Toy regression problem – approach 4
● M = 4.
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Toy regression problem – approach 4
● M = 4.
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Toy regression problem – approach 4
● M = 4.
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Toy regression problem – approach 4
● M = 4.
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Toy regression problem – approach 4
● M = 4.
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Toy regression problem – approach 4
● M = 16.
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Toy regression problem – approach 4
● M = 16.
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Toy regression problem – approach 4
● M = 16.
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Toy regression problem – approach 4
● M = 16.
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Toy regression problem – approach 4
● M = 16.



27

Toy regression problem – approach 4
● M = 16.
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Toy regression problem – approach 4
● M = 256.
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Toy regression problem – approach 4
● M = 256.
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Toy regression problem – approach 4
● M = 256.
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Toy regression problem – approach 4
● M = 256.
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Toy regression problem – approach 4
● M = 256.
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Toy regression problem – approach 4
● M = 256.
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Toy regression problem – approach 4

● Why does this approach even work at all?

● Probably because the data likelihood / posterior is 
highly multi-modal for neural networks. Most local 
maxima also seem to have similar maximum values.

● When we try to minimize the corresponding loss 
multiple times (using SGD), starting from random 
initial points, we will thus likely end up at different 
local modes, capturing some of this multi-modality.
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Toy regression problem – approach 4
● M = 64, but all networks are trained with the same (randomly chosen) initialization.
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Toy regression problem – approach 4
● M = 64, but all networks are trained with the same (randomly chosen) initialization.
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Toy regression problem – approach 4
● M = 64, but all networks are trained with the same (randomly chosen) initialization.
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Toy classification problem
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Toy classification problem – approach 4
● M = 1.
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Toy classification problem – approach 4
● M = 1.
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Toy classification problem – approach 4
● M = 1.
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Toy classification problem – approach 4
● M = 1.
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Toy classification problem – approach 4
● M = 1.
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Toy classification problem – approach 4
● M = 1.
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Toy classification problem – approach 4
● M = 4.
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Toy classification problem – approach 4
● M = 4.
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Toy classification problem – approach 4
● M = 4.
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Toy classification problem – approach 4
● M = 4.
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Toy classification problem – approach 4
● M = 4.
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Toy classification problem – approach 4
● M = 4.
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Toy classification problem – approach 4
● M = 16.
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Toy classification problem – approach 4
● M = 16.
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Toy classification problem – approach 4
● M = 16.
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Toy classification problem – approach 4
● M = 16.
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Toy classification problem – approach 4
● M = 16.
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Toy classification problem – approach 4
● M = 16.
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Toy classification problem – approach 4
● M = 256.
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Toy classification problem – approach 4
● M = 256.
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Toy classification problem – approach 4
● M = 256.
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Toy classification problem – approach 4
● M = 256.
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Toy classification problem – approach 4
● M = 256.
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Toy classification problem – approach 4
● M = 256.
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Toy classification problem – approach 4
● M = 64, but all networks are trained with the same (randomly chosen) initialization.
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Toy classification problem – approach 4
● M = 64, but all networks are trained with the same (randomly chosen) initialization.
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Toy classification problem – approach 4
● M = 64, but all networks are trained with the same (randomly chosen) initialization.
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