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Intro

0 Fredrik: EE, Erik: CS.

0 Have been working remotely from Linkoéping.
0 3D detection (3DOD) of vehicles from LIDAR and image data, using deep learning (Fredrik).
0 Domain adaptation (DA) via image translations using GANSs (Erik).

0 Supervisors:Eskild 0 r g e, Amarié Krishnan & GustavH & g @.ib).

0 Examiner: MichaelFelsberg(LiU).



Problem Description D2AD Detection

O«

Input: Image from forward-facing camera + LiDAR point cloud.

O«

Output: Estimated 3D position, size and heading of all visible vehicles.

0 Two used datasets: KITTI and SYN (7dLabs).
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Vision meets Robotics: The KITTI Datagatdreas Geigeret al.
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Video:
https://photos.app.goo.gl/XixvzQuolL FxyL BdH9



https://photos.app.goo.gl/XixvzQuoLFxyLBdH9

Problem Description DDomain Adaptation

0 Given: Annotated dataset (source) and a dataset that iBot annotated (target).
0 Goal: Train a model on source images that performs well on target images.
0 Method: Narrow the domain gap between source and target by translating source images to look

more like target images, using GANSs.






Problem Formulation
0 Given:
3 SYN (Images, LIDAR point clouds, annotated 2Dbboxes, annotated 3Dbboxes).
3 KITTI (Images, LIDAR point clouds, annotated 2Dbboxes).

0 Goal:
3 Train 3DOD model with maximum performance on KITTI (use annotated 3Dbboxes for evaluation).

0 Motivation:

3 Could be used to automati cal
3 Could be used to automati cal
be manually fine-tuned by a human annotator.

annotate 3Dbboxes
generate proposal
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0 Method:

3 Train a LIDAR model on SYN.
3 Train a LiDARand-image model on SYN.
3 Train a LiDARand-image model on SYN while applying domain adaptation on the images.
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Generative Adversarial Networks

0 Introduced by lan Goodfellow et al.in 2014.

0 Traditional model included two neural networks:
3  Generator - Generating data closely resemblinghe data distribution.

3 Discriminator - Discriminate sbetween generated samples and samples frorthe data distribution.



Generative Adversarial Networks
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Translation: GTA 5 and Cityscapes

0 Translate betweenasynthetic dataset and a dataset collected in the real world:
3 GTA 5- Extracted images and annotations from the video game GTA 5.

3  Cityscapes- One of the larger datasets with semantic segmentation annotations.

0 A common imageto-image translation problem.



CycleGAN

Unpaired Imageto-lImage Translation using Generative Adversarial Netwqrkku et al.

O«

Has been shown to produce imagdo-image translations of high quality.

0 Does not require that the domains are paired.

O«

Two generators and two discriminators.

O«

Cycle-consistency.



CycleGAN
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Representations - Generator
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Representation
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Multi -scale discriminator.
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