Evaluating Scalable Bayesian Deep Learning
Methods for Robust Computer Vision
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[llustrative toy problems - Classification

What is the problem?

» While deep learning has become the go-to approach in computer vision, these
models fail to properly capture the uncertainty inherent in their predictions.
Bayesian deep learning addresses this issue in a principled manner. Predictive
uncertainty is then decomposed into aleatoric and epistemic uncertainty.
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» Aleatoric uncertainty captures inherent and irreducible data noise, and can be
estimated by directly predicting the conditional distribution p(y|x). Estimating
epistemic uncertainty, which accounts for uncertainty in the model parameters,
can mitigate model over-confidence and is thus of great importance.

» While epistemic uncertainty estimation has proven to be highly challenging,
especially for large-scale models employed in real-world computer vision tasks,
scalable techniques have recently emerged.

» The research community however lacks a common and comprehensive
evaluation framework for such methods. Both researchers and practitioners are
currently thus unable to properly assess and compare competing methods.

Street-scene semantic segmentation

Our contributions

» Given an image x € R?%*3 predict y of size h x w, in which each pixel is
assigned to one of C classes (road, car, etc.). Models are trained on synthetic
data and evaluated on real data, testing robustness to out-of-domain inputs.

» We propose a comprehensive evaluation framework for scalable epistemic
uncertainty estimation methods in deep learning. It is specifically designed to
test the robustness required in real-world computer vision applications.

» Metrics for evaluation of uncertainty estimation quality:
> AUSE: relative measure that reveals how well the estimated uncertainty can
be used to sort predictions from worst (large true prediction error) to best.
> ECE: absolute measure in terms of calibration. A well-calibrated model is not
over-confident nor over-conservative.

» Our proposed framework employs state-of-the-art models on the tasks of
depth completion (regression) and semantic segmentation (classification).

» We provide the first properly extensive and conclusive comparison of the two
current state-of-the-art scalable methods: ensembling and MC-dropout. Our
comparison demonstrates that ensembling consistently provides more reliable

and practically useful uncertainty estimates. V —— 600[ * :
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» Publicly available source code: github.com/fregu856/evaluating bdl.

Input Prediction

2.8

2.4

2.0

Predictive uncertainty

DU 1.0
PR -

gt i< 25 °
A1 prl YRR .

—e— Ensembling
—m— MC-dropout
——  SGLD

0.26

0.24

AUSE

0.22

Depth completion

4.00

ECE

2.00

—e— Ensembling
—m— MC-dropout

(generalization of ECE to the regression setting).
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85 » Given an image Ximg € R"**3 and an associated sparse depth map, predict a
aﬂf'? dense depth map y € R of the scene. Models are trained on synthetic data
? and evaluated on real data, testing robustness to out-of-domain inputs.
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g . » Metrics for evaluation of uncertainty estimation quality: AUSE and AUCE
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Discussion & conclusion

» Ensembling, M = 64:

» Required training scales linearly with M for ensembling, but this is not a major
concern in most safety-critical applications, such as automotive. The main
drawback of both methods is instead the computational cost at test time that
scales linearly with M, affecting real-time applicability.

» MC-dropout, M = 64:

» Our work suggests that ensembling should be considered the new go-to method
for scalable epistemic uncertainty estimation. We attribute its success to the
ability to capture multi-modality in the posterior distribution p(6|D).

fredrik.gustafsson@it.uu.se, martin.danelljan@vision.ee.ethz.ch, thomas.schon@it.uu.se


github.com/fregu856/evaluating_bdl

