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Overview

I We derive an efficient and convenient objective that can be employed to train
a parameterized distribution q(y|x;φ) by directly minimizing its KL divergence
to a conditional energy-based model (EBM) p(y|x; θ).

I We employ the proposed objective to jointly learn an effective MDN proposal
distribution during EBM training, thus addressing the main practical limitations
of energy-based regression.
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Background: Energy-Based Models

An energy-based model (EBM) specifies a probability distribution p(x; θ) over
x ∈ X directly via a parameterized scalar function fθ : X → R:

p(x; θ) =
efθ(x)

Z(θ)
, Z(θ) =

∫
efθ(x̃)dx̃

I The EBM p(x; θ) is thus a highly expressive model that puts minimal restricting
assumptions on the true distribution p(x). The normalizing partition function
Z(θ) =

∫
efθ(x̃)dx̃ is however intractable, which complicates evaluating or

sampling from the EBM p(x; θ).

Background: Energy-Based Regression

Train a neural network fθ : X × Y → R to predict a scalar value fθ(x, y) ∈ R, then
model the distribution p(y|x) with the conditional EBM p(y|x; θ):

p(y|x; θ) = efθ(x,y)

Z(x, θ)
, Z(x, θ) =

∫
efθ(x,ỹ)dỹ.

Background: Energy-Based Regression - Prediction

Predict the most likely target under the model given an input x? at test-time, i.e.
y? = argmaxy p(y|x?; θ) = argmaxy fθ(x

?, y). In practice, y? = argmaxy fθ(x
?, y) is

approximated by refining an initial estimate ŷ via T steps of gradient ascent,

y← y + λ∇yfθ(x
?, y).

Background: Energy-Based Regression - Training

The neural network fθ(x, y) can be trained using various methods for fitting a
distribution p(y|x; θ) to observed data {(xi, yi)}Ni=1.

The most straightforward training method is probably to approximate the
negative log-likelihood L(θ) = −

∑N
i=1 log p(yi|xi; θ) using importance sampling:

J(θ)=
1

N

N∑
i=1

log

(
1

M

M∑
m=1

efθ(xi,y
(m)
i )

q(y
(m)
i )

)
−fθ(xi, yi), (1)

{y(m)
i }

M
m=1 ∼ q(y) (proposal distribution).

Previous work has also employed noise contrastive estimation (NCE):

JNCE(θ)=−
1

N

N∑
i=1

J
(i)
NCE(θ), J

(i)
NCE(θ)=log

exp
{
fθ(xi, y

(0)
i )−log q(y(0)i )

}
M∑

m=0

exp
{
fθ(xi, y

(m)
i )−log q(y(m)

i )
},

y
(0)
i , yi, {y(m)

i }
M
m=1 ∼ q(y) (noise distribution).

I Effectively, JNCE(θ) is the softmax cross-entropy loss for a classification problem

with M + 1 classes (which of the M + 1 values {y(m)
i }Mm=0 is the true target yi?).

Practical Limitations of Energy-Based Regression

In previous work, the proposal/noise distribution q(y) was set to a mixture of K
Gaussian components centered at the true target yi, q(y) =

1
K

∑K
k=1N (y; yi, σ

2
k
I).

I q(y) contains task-dependent hyperparameters K and {σ2
k
}K
k=1

.

I q(y) depends on the true target yi and can thus only be utilized during training.

We address both these limitations by jointly learning a parameterized
proposal/noise distribution q(y|x;φ) during EBM training. We derive an efficient
and convenient objective that can be employed to train q(y|x;φ) by directly
minimizing its KL divergence to the EBM p(y|x; θ).

Learning the Proposal

I We want the proposal/noise distribution q(y|x;φ) to be a close approximation
of the EBM p(y|x; θ). Specifically, we want to find φ that minimizes the KL
divergence between q(y|x;φ) and p(y|x; θ).

I Therefore, we seek to compute ∇φDKL

(
p(y|x; θ) ‖ q(y|x;φ)

)
. The gradient

∇φDKL is generally intractable, but can be conveniently approximated.

Learning the Proposal

Result 1: For a conditional EBM p(y|x; θ) = efθ(x,y)/
∫
efθ(x,ỹ)dỹ and

distribution q(y|x;φ),

∇φDKL

(
p ‖ q

)
≈ ∇φ log

(
1

M

M∑
m=1

efθ(x,y
(m))

q(y(m)|x;φ)

)
,

where {y(m)}Mm=1 are M independent samples drawn from q(y|x;φ).

Given data {xi}Ni=1, Result 1 implies that q(y|x;φ) can be trained to
approximate the EBM p(y|x; θ) by minimizing the loss,

JKL(φ) =
1

N

N∑
i=1

log

(
1

M

M∑
m=1

efθ(xi,y
(m)
i )

q(y
(m)
i |xi;φ)

)
,

{y(m)
i }

M
m=1 ∼ q(y|xi;φ).

Joint Training Method

I Since JKL(φ) is identical to the first term of the EBM loss J(θ) in (1),
the EBM p(y|x; θ) and proposal q(y|x;φ) can be trained by jointly
minimizing (1) w.r.t. both θ and φ.

I The EBM p(y|x; θ) and proposal/noise distribution q(y|x;φ) can also
be jointly trained by updating φ via JKL(φ), and updating θ via JNCE(θ).

Utilizing the Proposal

As q(y|x;φ) has been trained to approximate the EBM p(y|x; θ), it can
be utilized with self-normalized importance sampling to e.g. compute
the EBM mean at test-time, thus producing a stand-alone prediction y?.
It can also be used to draw approximate samples from the EBM:
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