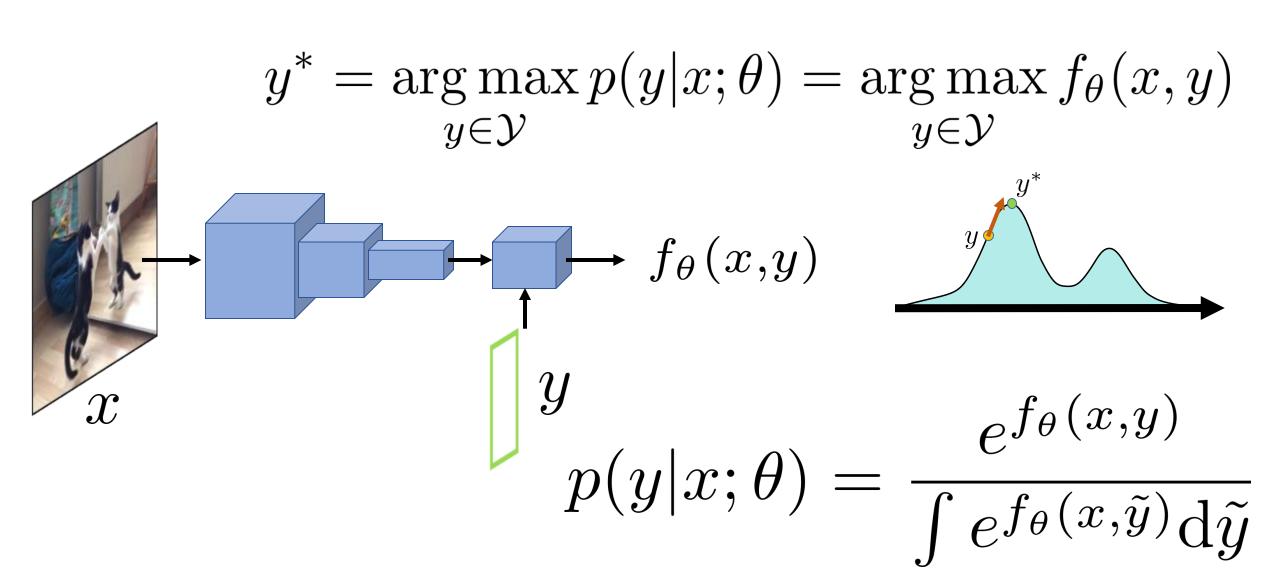
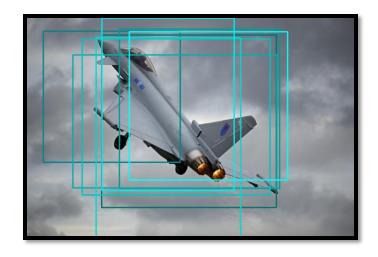


How to Train Your Energy-Based Model for Regression

Fredrik K. Gustafsson¹ Martin Danelljan² Radu Timofte² Thomas B. Schön¹


¹Department of Information Technology, Uppsala University, Sweden ²Computer Vision Lab, ETH Zürich, Switzerland

Energy-Based Models for Regression:

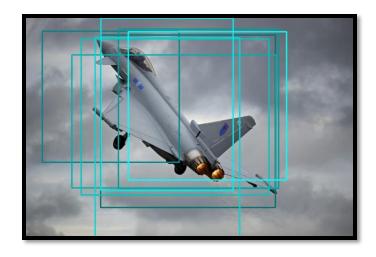


Noise Contrastive Estimation (NCE):

$$y^{(i,0)} \triangleq y_i$$

$$\{y^{(i,m)}\}_{m=1}^M \sim p_N(y|y_i)$$

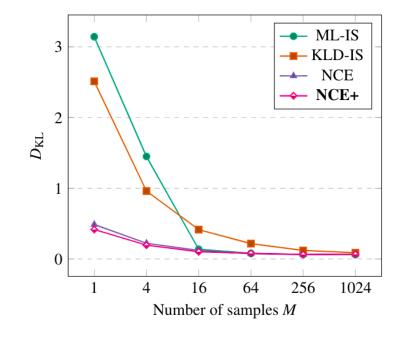
$$J(\theta) = -\frac{1}{n} \sum_{i=1}^{n} \log \frac{\exp \left\{ f_{\theta}(x_i, y^{(i,0)}) - \log p_N(y^{(i,0)}|y_i) \right\}}{\sum_{m=0}^{M} \exp \left\{ f_{\theta}(x_i, y^{(i,m)}) - \log p_N(y^{(i,m)}|y_i) \right\}}$$

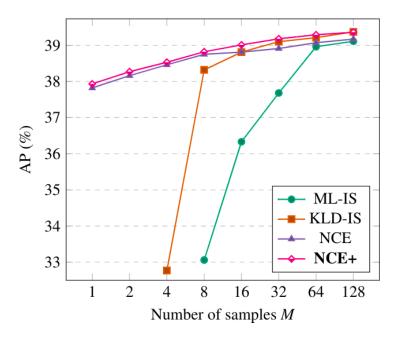


Our Proposed Training Method (NCE+):

$$y^{(i,0)} \triangleq y_i + \nu_i$$

$$\{y^{(i,m)}\}_{m=1}^M \sim p_N(y|y_i)$$




$$J(\theta) = -\frac{1}{n} \sum_{i=1}^{n} \log \frac{\exp \left\{ f_{\theta}(x_i, y^{(i,0)}) - \log p_N(y^{(i,0)}|y_i) \right\}}{\sum_{m=0}^{M} \exp \left\{ f_{\theta}(x_i, y^{(i,m)}) - \log p_N(y^{(i,m)}|y_i) \right\}}$$

Comparison of Training Methods:

	ML-IS	ML-MCMC-1	ML-MCMC-4	ML-MCMC-8	KLD-IS	NCE	DSM	NCE+
AP (%) ↑	39.4	36.4	36.4	36.4	39.6	39.5	36.3	39.7
$AP_{50}(\%)\uparrow$	58.6	57.9	57.9	58.0	58.6	58.6	57.9	58.7
$AP_{75}(\%) \uparrow$	42.1	38.8	39.0	39.0	42.6	42.4	38.9	42.7
Training Cost ↓	1.03	2.47	7.05	13.3	1.02	1.04	3.84	1.09

Visual Tracking Experiments:

	MDNet [40]	UPDT [4]	DaSiamRPN [60]	ATOM [8]	SiamRPN++ [30]	DiMP [5]	SiamRCNN [53]	PrDiMP [9]	DiMP- KLD-IS	DiMP- NCE	DiMP- NCE+
TrackingNet LaSOT	60.6 39.7	61.1	63.8	70.3 51.5	73.3 49.6	74.0 56.9	81.2 64.8 (62.3)	75.8 59.8	78.1 63.1	77.1 62.8	78.7 63.7
UAV123 NFS OTB-100	52.8 42.2 67.8	54.5 53.7 70.2	57.7 - 65.8	63.2 58.4 66.9	61.3 - 69.6	64.3 62.0 68.4	64.9 63.9 70.1 (68.0)	66.7 63.5 69.6	66.6 64.7 70.1	65.2 64.3 69.3	67.2 65.0 70.7

github.com/fregu856/ebms_regression github.com/visionml/pytracking