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What is the problem?

While deep learning has become the go-to approach in computer vision, these models
fail to properly capture the uncertainty inherent in their predictions. The approach of
Bayesian deep learning aims to address this issue in a principled manner.

1/8



What is the problem?

While deep learning has become the go-to approach in computer vision, these models
fail to properly capture the uncertainty inherent in their predictions. The approach of
Bayesian deep learning aims to address this issue in a principled manner.

Predictive uncertainty is then decomposed into aleatoric and epistemic uncertainty.
Estimating epistemic uncertainty, which accounts for uncertainty in the model

parameters, can mitigate model over-confidence and is thus of great importance.

1/8



What is the problem?

While deep learning has become the go-to approach in computer vision, these models
fail to properly capture the uncertainty inherent in their predictions. The approach of
Bayesian deep learning aims to address this issue in a principled manner.

Predictive uncertainty is then decomposed into aleatoric and epistemic uncertainty.
Estimating epistemic uncertainty, which accounts for uncertainty in the model

parameters, can mitigate model over-confidence and is thus of great importance.

Epistemic uncertainty estimation is challenging, especially for /arge-scale models used
in real-world computer vision tasks, but scalable methods have recently emerged.

1/8



What is the problem?

While deep learning has become the go-to approach in computer vision, these models
fail to properly capture the uncertainty inherent in their predictions. The approach of
Bayesian deep learning aims to address this issue in a principled manner.

Predictive uncertainty is then decomposed into aleatoric and epistemic uncertainty.
Estimating epistemic uncertainty, which accounts for uncertainty in the model
parameters, can mitigate model over-confidence and is thus of great importance.

Epistemic uncertainty estimation is challenging, especially for /arge-scale models used
in real-world computer vision tasks, but scalable methods have recently emerged.

The research community however lacks a common and comprehensive evaluation
framework for such methods. Both researchers and practitioners are currently thus

unable to properly assess and compare competing methods. )
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Our contributions

We propose a comprehensive evaluation framework for scalable epistemic uncertainty
estimation methods in deep learning. It is specifically designed to test the robustness
(to out-of-domain inputs) required in real-world computer vision applications.
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Our contributions

We propose a comprehensive evaluation framework for scalable epistemic uncertainty
estimation methods in deep learning. It is specifically designed to test the robustness
(to out-of-domain inputs) required in real-world computer vision applications.

Our proposed framework employs state-of-the-art models on the tasks of depth
completion (regression) and street-scene semantic segmentation (classification).

We provide an extensive and conclusive comparison of the two current state-of-the-art
scalable methods: ensembling and MC-dropout, demonstrating that ensembling

consistently provides more reliable and practically useful uncertainty estimates.

Publicly available code: www.github.com/fregu856/evaluating_bdl.
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Street-scene semantic segmentation

Given an image x € R"*W*3 the task is to predict y of size h x w, in which each pixel
is assigned to one of C classes (road, car, etc.). Models are trained on synthetic data
and evaluated on real-world data, testing robustness to out-of-domain inputs.
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Street-scene semantic segmentation - Results

Metrics for evaluation of uncertainty estimation quality:

e AUSE: relative measure that reveals how well the estimated uncertainty can be
used to sort predictions from worst (large true prediction error) to best.

e ECE: absolute measure in terms of calibration. A well-calibrated model is not
over-confident (highly confident but incorrect predictions) nor over-conservative.
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Depth completion

Given an image Ximg € RM*wx3 and an associated sparse depth map, the task is to
predict a dense depth map y € RP*" of the scene. Models are trained on synthetic
data and evaluated on real-world data, testing robustness to out-of-domain inputs.
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Depth completion - Results

Metrics for evaluation of uncertainty estimation quality: AUSE and AUCE
(generalization of ECE to the regression setting).
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Discussion & conclusion

Required training scales linearly with M for ensembling, but this is not a major

concern in most safety-critical applications, such as automotive.

The main drawback of both ensembling and MC-dropout is instead the computational
cost at test time that scales linearly with M, affecting real-time applicability.
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Discussion & conclusion

Required training scales linearly with M for ensembling, but this is not a major

concern in most safety-critical applications, such as automotive.

The main drawback of both ensembling and MC-dropout is instead the computational

cost at test time that scales linearly with M, affecting real-time applicability.
Our work suggests that ensembling should be considered the new go-to method for

scalable epistemic uncertainty estimation. We attribute the success of ensembling to
its ability to capture multi-modality in the posterior distribution p(8|D).
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