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1. Introduction

We need to teach how doubt is not to be feared but welcomed. It’s OK to say, “I don’t know.”

- Richard P. Feynman

• DNNs have become the go-to approach in computer vision, but generally fail to

properly capture the uncertainty inherent in their predictions.

• Estimating this predictive uncertainty can be crucial, for instance in automotive

and medical applications.

• Bayesian deep learning deals with predictive uncertainty by decomposing it into

the distinct types of aleatoric and epistemic uncertainty.
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1. Introduction - Aleatoric uncertainty

• Aleatoric uncertainty captures inherent and irreducible data noise.

• Input-dependent aleatoric uncertainty is present whenever we expect the

estimated targets to be inherently more uncertain for some inputs.
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1. Introduction - Aleatoric uncertainty

• This is true e.g. in 3D object detection, where the estimated location of distant

objects generally is expected be more uncertain.
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1. Introduction - Aleatoric uncertainty

• This is also true in semantic segmentation, where image pixels at object

boundaries are inherently ambiguous.

5/29



1. Introduction - Epistemic uncertainty

• Epistemic uncertainty accounts for uncertainty in the DNN model parameters.

• Large epistemic uncertainty is present when a large set of model parameters

explains the data (almost) equally well.
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2. Predictive uncertainty estimation using Bayesian deep learning

The task is to predict a target value y ∈ Y given an input x ∈ X . We are given a

training set of i.i.d. sample pairs D = {X ,Y } = {(xi , yi )}Ni=1, (xi , yi ) ∼ p(x , y).

We view a DNN as a function fθ : X → U , parameterized by θ ∈ RP , that maps

an input x ∈ X to an output fθ(x) ∈ U .

• Input-dependent aleatoric uncertainty can be estimated by:

• Letting a DNN fθ output the parameters of some probability distribution, creating a

parametric model p(y |x , θ) of the conditional distribution.

• Finding the maximum-likelihood estimate of the model parameters, θ̂MLE, by

minimizing − log p(Y |X , θ) = −
∑N

i=1 log p(yi |xi , θ).

• Given x? at test time, the DNN predicts the distribution p(y?|x?, θ̂MLE) over y?.
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2. Predictive uncertainty estimation using BDL - Aleatoric uncertainty

• In classification, a categorical model is commonly used:

p(y |x , θ) = Cat(y ; sθ(x)), sθ(x) = Softmax(fθ(x)). (1)

• − log p(Y |X , θ) corresponds to the standard cross-entropy loss.

• In regression, a Gaussian model can be used (1D case):

p(y |x , θ) = N
(
y ;µθ(x), σ2θ(x)

)
, fθ(x) = [µθ(x) log σ2θ(x) ]T ∈ R2. (2)

• − log p(Y |X , θ) corresponds to the following loss:

L(θ) =
1

N

N∑
i=1

(yi − µθ(xi ))2

σ2
θ(xi )

+ log σ2
θ(xi ).
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2. Predictive uncertainty estimation using BDL - Epistemic uncertainty

• Epistemic uncertainty can be estimated in a principled manner by performing

Bayesian inference.

The posterior p(θ|D) ∝ p(Y |X , θ)p(θ) is then utilized to

obtain the predictive posterior distribution:

p(y?|x?,D) =

∫
p(y?|x?, θ)p(θ|D)dθ ≈ 1

M

M∑
i=1

p(y?|x?, θ(i)), θ(i) ∼ p(θ|D) ,

which captures both aleatoric and epistemic uncertainty.

• In practice, an approximate posterior q(θ) ≈ p(θ|D) has to be used, resulting in:

p̂(y?|x?,D) ,
1

M

M∑
i=1

p(y?|x?, θ(i)), θ(i) ∼ q(θ). (3)
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3. Illustrative example

We consider the following 1D regression problem:

y ∼ N
(
µ(x), σ2(x)

)
, µ(x) = sin(x), σ(x) =

0.15

1 + e−x
.

(a) True data generator.
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(b) Training dataset. 12/29



3. Illustrative example - Direct regression

• A DNN trained to directly predict targets, y? = fθ̂(x?), via the L2 loss is able to

regress the mean for x? ∈ [−3, 3], but fails to capture any notion of uncertainty:
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3. Illustrative example - Gaussian model, maximum-likelihood

• A corresponding Gaussian DNN model (2) trained via maximum-likelihood

correctly accounts for aleatoric uncertainty, but generates overly confident

predictions for inputs |x?| > 3 not seen during training:
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3. Illustrative example - Gaussian model, approximate Bayesian inference

• A Gaussian DNN model trained via approximate Bayesian inference (3), with

M = 1 000 samples obtained via HMC, is additionally able to predict more

reasonable uncertainties in the region where no training data was available:
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4. Ensembling as approximate Bayesian inference

Ensembling: create a parametric model p(y |x , θ) using a DNN fθ, learn point

estimates {θ̂(m)}Mm=1 by repeatedly minimizing − log p(Y |X , θ) with random ini-

tialization, and average over the models to obtain the predictive distribution:

p̂(y?|x?) ,
1

M

M∑
m=1

p(y?|x?, θ̂(m)). (4)

Approximate Bayesian inference:

p̂(y?|x?,D) ,
1

M

M∑
i=1

p(y?|x?, θ(i)), θ(i) ∼ q(θ) ≈ p(θ|D). (5)

• Since {θ̂(m)}Mm=1 always can be seen as samples from some distribution q̂(θ), we

note that (4) and (5) are virtually identical.
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4. Ensembling as approximate Bayesian inference

• Ensembling can thus be viewed as approximate Bayesian inference.

The level of

approximation is determined by the ensemble size M and how well the implicit

sampling distribution q̂(θ) approximates the posterior p(θ|D).

• Since p(Y |X , θ) is highly multi-modal for DNNs, so is p(θ|D) ∝ p(Y |X , θ)p(θ).

• Also, by minimizing − log p(Y |X , θ) multiple times using SGD, starting from

randomly chosen initial points, we are likely to find many different local optima.

• Ensembling can thus generate a compact set of samples {θ̂(m)}Mm=1 that captures

the important aspect of multi-modality in p(θ|D).
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4. Ensembling as approximate Bayesian inference - Illustrative example

• On the 1D regression problem, we observe that ensembling provides reasonable

approximations to HMC, even for relatively small values of M:
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(a) HMC, M = 1 000.
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(b) Ensembling, M = 16.
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5. Evaluating Scalable BDL Methods for Robust Computer Vision

• Our extended abstract led to the paper Evaluating Scalable Bayesian Deep
Learning Methods for Robust Computer Vision.
• arXiv: https://arxiv.org/abs/1906.01620

• Code: https://github.com/fregu856/evaluating_bdl

21/29
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5. Evaluating Scalable BDL Methods for Robust Computer Vision

• Contributions:

• We propose an evaluation framework for predictive uncertainty estimation that is

specifically designed to test the robustness required in real-world vision applications.

• We perform an extensive comparison of ensembling and MC-dropout on the tasks

of depth completion and street-scene semantic segmentation.

MC-dropout: simple and scalable method for epistemic uncertainty estimation.

Entails using dropout also at test time and averaging M stochastic forward passes

on the same input. Can be interpreted as performing variational inference with a

Bernoulli variational distribution.

22/29
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5.1. Experiments

• To simulate challenging conditions found e.g. in automotive applications, where

robustness to out-of-domain inputs is required to ensure safety, we train models

exclusively on synthetic data (Virtual KITTI1, Synscapes2) and evaluate the

predictive uncertainty on real-world data (KITTI3, Cityscapes4).

• We evaluate the methods in terms of the relative AUSE metric (how well the

ordering of predictions in terms of estimated uncertainty matches the “oracle”

ordering in terms of true prediction error) and the absolute measure of calibration.

1https://europe.naverlabs.com/Research/Computer-Vision/Proxy-Virtual-Worlds/
2https://7dlabs.com/synscapes-overview
3http://www.cvlibs.net/datasets/kitti/
4https://www.cityscapes-dataset.com/
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5.2. Results - Depth completion

Depth completion:
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5.2. Results - Street-scene semantic segmentation

Street-scene semantic segmentation:
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5.2. Results - Qualitative results

Video: https://youtu.be/CabPVqtzsOI.

26/29

https://youtu.be/CabPVqtzsOI


Outline

1. Introduction

2. Predictive uncertainty estimation using Bayesian deep learning

3. Illustrative example

4. Ensembling as approximate Bayesian inference

5. Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer Vision

5.1. Experiments

5.2. Results

6. Conclusion

27/29



6. Conclusion

• We noted that ensembling naturally can be viewed as an approximate Bayesian

inference method, and provided some intuition for why it should be a reasonable

approximation specifically for DNNs.

• We proposed an evaluation framework for predictive uncertainty estimation that is

specifically designed to test the robustness required in real-world computer vision

applications.

• We performed an extensive comparison of ensembling and MC-dropout on the

tasks of depth completion and street-scene semantic segmentation, the results of

which suggest that ensembling consistently provides more reliable and useful

predictive uncertainty estimates.
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tasks of depth completion and street-scene semantic segmentation, the results of

which suggest that ensembling consistently provides more reliable and useful

predictive uncertainty estimates.
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