Ensembling as Approximate Bayesian Inference for Predictive Uncertainty Estimation in Deep Learning

Fredrik K. Gustafsson
Department of Information Technology
Uppsala University, Sweden
fredrik.gustafsson@it.uu.se

Martin Danelljan
Computer Vision Laboratory
ETH Zurich, Switzerland
martin.danelljan@vision.ee.ethz.ch

Thomas B. Schön
Department of Information Technology
Uppsala University, Sweden
thomas.schon@it.uu.se

Abstract

We view ensembling as an approximate Bayesian inference method, justify why it should be a reasonable approximation for Deep Neural Networks and extensively compare it with other approximate methods in terms of predictive uncertainty estimation quality. We provide experimental results on illustrative toy problems and the real-world computer vision tasks of street-scene semantic segmentation and depth completion. This extended abstract describes preliminary results from ongoing work intended for NeurIPS 2019.

1 Introduction

Deep Neural Networks (DNNs) have become the standard paradigm within most computer vision problems due to their astonishing predictive power compared to previous alternatives. Current applications include many safety-critical tasks, such as street-scene semantic segmentation [5] and depth completion [18]. Since erroneous predictions can have disastrous consequences, such applications require an accurate measure of the predictive uncertainty.

Within the Bayesian framework, the learned models should ideally be able to capture two different types of uncertainty, as described by Kendall and Gal [15]. Epistemic (model) uncertainty accounts for uncertainty in the model parameters, while aleatoric (data) uncertainty captures inherent and irreducible data noise. Large epistemic uncertainty is present in cases where a large set of model parameters explains the data about equally well. Input-dependent aleatoric uncertainty is present whenever the estimated targets y are expected to be inherently more uncertain for some inputs x.

In many computer vision applications, aleatoric uncertainty can be effectively estimated by letting a DNN directly output the parameters of some probability distribution, modeling the conditional distribution $p(y|x)$. For classification tasks, this is often realized by a softmax output layer, while Laplace and Gaussian models have been employed for regression [4, 14, 15, 17]. In the conventional approach of learning just a single point estimate of the DNN parameters, these models do however fail to capture any notion of epistemic uncertainty. Estimating epistemic uncertainty with DNNs is in fact a highly challenging task, since the vast dimensionality of the parameter space renders standard Bayesian inference approaches intractable. To tackle this problem, various approximate inference techniques have been explored [19, 11, 13, 12, 22, 3, 23], with the most commonly used method being MC-dropout [9, 8, 15, 10, 16]. Previous work has also explored the use of ensembling [6] as a non-Bayesian alternative for epistemic uncertainty estimation [17, 4, 14].

Preprint. Work in progress.
In this work, we study how to learn DNN models for computer vision classification and regression tasks which are capable of capturing both aleatoric and epistemic uncertainty. Similar to previous work [17, 4, 14], we directly model the conditional distribution in order to estimate input-dependent aleatoric uncertainty, and employ ensembling in order to estimate epistemic uncertainty. We do however view ensembling as an approximate Bayesian inference method, justify why it should be a reasonable approximation for DNNs and extensively compare it with other approximate methods in terms of predictive uncertainty estimation quality.

Specifically, our main contributions are: (1) We quantitatively measure how well the predictive distribution of various approximate Bayesian inference methods, including ensembling, approximates that of Hamiltonian Monte Carlo [19, 20] on an illustrative toy problem for both regression and classification. (2) We propose a framework for evaluating the quality of predictive uncertainty estimates that is specifically designed for real-world computer vision applications. (3) We demonstrate via a rigorous experimental evaluation that ensembling seems to consistently produce more reliable and useful predictive uncertainty estimates than the commonly used MC-dropout method.

2 Ensembling as approximate Bayesian inference

Ensembling [4] is a general procedure of learning M point estimates $\{\hat{\theta}^{(m)}\}_{m=1}^{M}$ of the parameters θ of some model. In our setting, we let a DNN f_θ output the parameters of a certain probability distribution to create a parametric model $p(y|x, \theta)$ of the conditional distribution. If we learn multiple point estimates $\{\hat{\theta}^{(m)}\}_{m=1}^{M}$ and average over the corresponding parametric models $\{p(y|x, \hat{\theta}^{(m)})\}_{m=1}^{M}$, we obtain the following predictive distribution,

$$
\hat{p}(y^*|x^*) \equiv \frac{1}{M} \sum_{m=1}^{M} p(y^*|x^*, \hat{\theta}^{(m)}).
$$

(1)

Noting that $\{\hat{\theta}^{(m)}\}_{m=1}^{M}$ always can be seen as samples from some distribution $q(\theta)$, and comparing (1) to the approximate posterior distribution for Bayesian inference,

$$
p(y^*|x^*, \mathcal{D}) = \int p(y^*|x^*, \theta)p(\theta|\mathcal{D})d\theta \approx \frac{1}{M} \sum_{i=1}^{M} p(y^*|x^*, \theta^{(i)}), \quad \theta^{(i)} \sim p(\theta|\mathcal{D}),
$$

(2)

we observe that these two expressions are virtually identical. Ensembling can thus be seen as an approximate Bayesian inference method, where the level of approximation is determined by the ensemble size M and how well the implicit sampling distribution $q(\theta)$ approximates the true posterior $p(\theta|\mathcal{D})$. Ideally, we want $\{\hat{\theta}^{(m)}\}_{m=1}^{M}$ to be distributed exactly according to $p(\theta|\mathcal{D}) = p(Y|X, \theta)p(\theta)/p(Y|X)$, where $p(Y|X, \theta)$ is highly multi-modal for DNNs. When attempting to represent $p(\theta|\mathcal{D}) \propto p(Y|X, \theta)p(\theta)$ with a relatively small number of samples $\{\hat{\theta}^{(m)}\}_{m=1}^{M}$, the most important aspect to capture in terms of epistemic uncertainty is herefor this multi-modality.

Now consider learning $\{\hat{\theta}^{(m)}\}_{m=1}^{M}$ by repeatedly attempting to find the maximum-a-posteriori (MAP) estimate $\hat{\theta}_{MAP} = \arg\max_{\theta} p(\theta|\mathcal{D})$, by minimizing the corresponding objective $-\log p(Y|X, \theta)p(\theta)$. If there was a unique global optima that we were able to find every time, we would end up with M identical point estimates and $q(\theta)$ would likely be a rather poor approximation of $p(\theta|\mathcal{D})$. However, when we in practice attempt to minimize the objective $-\log p(Y|X, \theta)p(\theta)$ using stochastic gradient algorithms, the best we can hope for is to find a local optima. If we attempt to minimize $-\log p(Y|X, \theta)p(\theta)$ multiple times, starting at randomly chosen initial points, we are thus likely to end up at different local optima and $\{\hat{\theta}^{(m)}\}_{m=1}^{M}$ will therefore capture some of the multi-modality in $p(\theta|\mathcal{D})$.

3 Experiments

We conduct experiments both on illustrative toy problems and on the real-world computer vision tasks of street-scene semantic segmentation and depth completion. Due to the vastness of the input image space, we argue that it in automotive applications must be expected that models will encounter inputs
Depth completion In depth completion, we are given an RGB image $x_{\text{img}} \in \mathbb{R}^{h \times w}$ from a front-facing camera and a corresponding sparse depth map $x_{\text{sparse}} \in \mathbb{R}^{h \times w}$. Non-zero pixels of x_{sparse} are LiDAR depth measurements, projected onto the image plane. The goal is to predict a dense depth map $y \in \mathbb{R}^{h \times w}$, in which each pixel corresponds to a predicted depth measurement. We utilize the Virtual KITTI dataset [7] for training and the KITTI depth completion dataset [11, 21] for evaluation. We use the DNN model presented by Ma et al. [18]. The inputs $x_{\text{img}}, x_{\text{sparse}}$ are separately processed by initial convolutional layers, concatenated and fed to an encoder-decoder architecture. We duplicate the final convolutional layer, outputting $\mu \in \mathbb{R}^{h \times w}$ and $\log \sigma^2 \in \mathbb{R}^{h \times w}$ instead of just $\hat{y} \in \mathbb{R}^{h \times w}$. That is, we use a Gaussian model for each pixel.

We evaluate the models in terms of the Area Under the Sparsification Error curve (AUSE) metric [14]. AUSE is a relative measure of the uncertainty estimation quality, comparing the ordering of predictions induced by the estimated predictive uncertainty with the "oracle" ordering in terms of true prediction error. As an absolute measure of uncertainty estimation quality, we also evaluate the models in terms of calibration. Since our models output the mean and variance of a Gaussian distribution for each pixel, we can construct prediction intervals of varying confidence level $p \in [0, 1]$ using the corresponding quantiles. When computing the proportion of pixels for which the prediction interval covers the target, we expect this value to equal $p \in [0, 1]$ for a perfectly calibrated model. We compute the absolute error with respect to perfect calibration and use the area under this curve as our metric, which we call Area Under the Calibration Error curve (AUCE).

A comparison of ensembling and MC-dropout in terms of AUSE and AUCE on the KITTI depth completion validation dataset is found in Figure 1. We observe in Figure 1a that ensembling consistently outperforms MC-dropout in terms of AUSE. The curves do however decrease as a function of M in a similar manner, complicating a definitive ranking in terms of epistemic uncertainty estimation quality. A ranking of the methods can be more readily conducted based on Figure 1b where we observe a clear improving trend as M increases for ensembling, whereas MC-dropout gets progressively worse.

References

