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Energy-Based Models

An energy-based model (EBM) specifies a probability distribution p(x ; θ) over

x ∈ X directly via a parameterized scalar function fθ : X → R:

p(x ; θ) =
efθ(x)

Z (θ)
, Z (θ) =

∫
efθ(x̃)dx̃

By defining fθ(x) using a deep neural network (DNN), p(x ; θ) becomes expressive

enough to learn practically any distribution from observed data.
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Energy-Based Models

An EBM specifies a probability distribution p(x ; θ) directly via a parameterized

scalar function fθ(x),

p(x ; θ) =
efθ(x)

Z (θ)
, Z (θ) =

∫
efθ(x̃)dx̃ ,

where fθ(x) commonly is defined using a DNN.

The EBM p(x ; θ) = efθ(x)/
∫
efθ(x̃)dx̃ is thus a highly expressive model that puts

minimal restricting assumptions on the true distribution p(x).

Drawback: the normalizing partition function Z (θ) =
∫
efθ(x̃)dx̃ is intractable, which

complicates evaluating or sampling from p(x ; θ).

(Compare with normalizing flows which are specifically designed to be easy to both

evaluate and sample. EBMs instead prioritize maximum expressivity) 3/18



Energy-Based Models

The definition of an EBM p(x ; θ),

p(x ; θ) =
efθ(x)

Z (θ)
, Z (θ) =

∫
efθ(x̃)dx̃ ,

includes the intractable Z (θ) =
∫
efθ(x̃)dx̃ .

This complicates evaluating or sampling from p(x ; θ).

In particular, EBMs are challenging to train. A variety of different approaches have

therefore been explored in literature.

A very recent tutorial on the subject:

How to Train Your Energy-Based Models
Yang Song, Diederik P. Kingma

arXiv:2101.03288 4/18



Energy-Based Models for Regression

Regression: learn to predict a continuous target y? ∈ Y = RK from a cor-

responding input x? ∈ X , given a training set D of i.i.d. input-target pairs,

D = {(xi , yi )}Ni=1, (xi , yi ) ∼ p(x , y).

We address this task by modelling the distribution p(y |x) with a conditional EBM:

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .

Here, fθ : X × Y → R is a DNN that maps any input-target pair (x , y) ∈ X × Y
directly to a scalar fθ(x , y) ∈ R, and Z (x , θ) is the input-dependent partition function.
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Energy-Based Models for Regression

EBMs for Regression: train a DNN fθ : X × Y → R to predict a scalar value

fθ(x , y), then model p(y |x) with the conditional EBM p(y |x ; θ):

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .

The EBM p(y |x ; θ) can learn complex target distributions directly from data:
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Energy-Based Models for Regression

EBMs for Regression: train a DNN fθ : X × Y → R to predict a scalar value

fθ(x , y), then model p(y |x) with the conditional EBM p(y |x ; θ):

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .

We have applied the approach to various regression problems:

• Age estimation, Y = R.

• Head-pose estimation, Y = R3.

• 2D bounding box regression (object detection, visual tracking), Y = R4.

• 3D bounding box regression (3D object detection in LiDAR point clouds), Y = R7.

• System identification, Y = R.
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Energy-Based Models for Regression - Prediction

EBMs for Regression: train a DNN fθ : X × Y → R to predict a scalar value

fθ(x , y), then model p(y |x) with the conditional EBM p(y |x ; θ):

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .

Given an input x? at test time, we usually predict y? by maximizing p(y |x?; θ):

y? = argmax
y

p(y |x?; θ) = argmax
y

fθ(x?, y)

In practice, y? = argmaxy fθ(x?, y) is approximated by refining an initial estimate ŷ via

T steps of gradient ascent,
y ← y + λ∇y fθ(x?, y),

thus finding a local maximum of fθ(x?, y). Evaluation of the partition function

Z (x?, θ) is therefore not required.
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Energy-Based Models for Regression - Prediction
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Energy-Based Models for Regression - Training

EBMs for Regression: train a DNN fθ : X × Y → R to predict a scalar value

fθ(x , y), then model p(y |x) with the conditional EBM p(y |x ; θ):

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .

The DNN fθ(x , y) can be trained using various methods for fitting a density p(y |x ; θ)

to observed data {(xi , yi )}Ni=1.

Generally, the most straightforward such method is probably to minimize the negative

log-likelihood L(θ) = −
∑N

i=1 log p(yi |xi ; θ), which for the EBM p(y |x ; θ) is given by,

L(θ) =
N∑
i=1

log

(∫
efθ(xi ,y)dy

)
− fθ(xi , yi ).
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Energy-Based Models for Regression - Training

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .

L(θ) = −
N∑
i=1

log p(yi |xi ; θ) =
N∑
i=1

log

(∫
efθ(xi ,y)dy

)
− fθ(xi , yi ).

The integral
∫
efθ(xi ,y)dy is however intractable, preventing exact evaluation of L(θ).

In Energy-Based Models for Deep Probabilistic Regression, we simply

approximated this intractable integral using importance sampling.
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Energy-Based Models for Regression - Training

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .

L(θ) = −
N∑
i=1

log p(yi |xi ; θ) =
N∑
i=1

log

(∫
efθ(xi ,y)dy

)
− fθ(xi , yi ).

Importance sampling:

− log p(yi |xi ; θ) = log

(∫
efθ(xi ,y)dy

)
− fθ(xi , yi )

= log

(∫
efθ(xi ,y)

q(y)
q(y)dy

)
− fθ(xi , yi )

≈ log

(
1

M

M∑
k=1

efθ(xi ,y
(k))

q(y (k))

)
− fθ(xi , yi ), y (k) ∼ q(y).
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Energy-Based Models for Regression - Training

EBMs for Regression: train a DNN fθ : X × Y → R to predict a scalar value

fθ(x , y), then model p(y |x) with the conditional EBM p(y |x ; θ):

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .

Various alternative techniques could however also be employed to train the DNN

fθ(x , y), including noise contrastive estimation (NCE) and score matching.

In How to Train Your Energy-Based Model for Regression, we therefore studied in

detail how EBMs should be trained specifically for regression problems.

We compared six methods on the task of 2D bounding box regression, and concluded

that a simple extension of NCE should be considered the go-to training method.
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Energy-Based Models for Regression - Training using NCE

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .

Noise contrastive estimation (NCE) entails learning to discriminate between

observed data examples and samples drawn from a noise distribution.

Specifically, the DNN fθ(x , y) is trained by minimizing the loss J(θ) = − 1
N

∑N
i=1 Ji (θ),

Ji (θ)=log
exp
{
fθ(xi , y

(0)
i )−log q(y

(0)
i |yi )

}
M∑

m=0
exp
{
fθ(xi , y

(m)
i )−log q(y

(m)
i |yi )

} ,
where y

(0)
i , yi , and {y (m)

i }Mm=1 are M samples drawn from a noise distribution q(y |yi )
that depends on the true target yi .
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Energy-Based Models for Regression - Training using NCE

J(θ) = − 1

N

N∑
i=1

Ji (θ), Ji (θ)=log
exp
{
fθ(xi , y

(0)
i )−log q(y

(0)
i |yi )

}
M∑

m=0
exp
{
fθ(xi , y

(m)
i )−log q(y

(m)
i |yi )

} ,
y
(0)
i , yi , {y (m)

i }Mm=1 ∼ q(y |yi ) (noise distribution).

Effectively, J(θ) is the softmax cross-entropy loss for a classification problem with

M + 1 classes (which of the M + 1 values {y (m)
i }Mm=0 is the true target yi?).

A simple yet effective choice for the noise distribution q(y |yi ) is a mixture of K

Gaussians centered at yi ,

q(y |yi ) =
1

K

K∑
k=1

N (y ; yi , σ
2
k I ).
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Energy-Based Models for Regression - Training using NCE

J(θ) = − 1

N

N∑
i=1

Ji (θ), Ji (θ)=log
exp
{
fθ(xi , y

(0)
i )−log q(y

(0)
i |yi )

}
M∑

m=0
exp
{
fθ(xi , y

(m)
i )−log q(y

(m)
i |yi )

} ,
y
(0)
i , yi , {y (m)

i }Mm=1 ∼ q(y |yi ) (noise distribution).
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Energy-Based Models for Regression - Training using NCE

J(θ) = − 1

N

N∑
i=1

Ji (θ), Ji (θ)=log
exp
{
fθ(xi , y

(0)
i )−log q(y

(0)
i |yi )

}
M∑

m=0
exp
{
fθ(xi , y

(m)
i )−log q(y

(m)
i |yi )

} ,
y
(0)
i , yi , {y (m)

i }Mm=1 ∼ q(y |yi ) (noise distribution).
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