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• Contributions:

• We propose an evaluation framework for predictive uncertainty estimation that is

specifically designed to test the robustness required in real-world vision applications.

• We perform an extensive comparison of ensembling and MC-dropout on the

tasks of depth completion and street-scene semantic segmentation.
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1. Introduction

We need to teach how doubt is not to be feared but welcomed. It’s OK to say, “I don’t know.”

- Richard P. Feynman

• DNNs have become the go-to approach in computer vision, but generally fail to

properly capture the uncertainty inherent in their predictions.

• Estimating this predictive uncertainty can be crucial, for instance in automotive

and medical applications.

• Bayesian deep learning deals with predictive uncertainty by decomposing it into

the distinct types of aleatoric and epistemic uncertainty.
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1. Introduction - General setting

The task is to predict a target value y ∈ Y given an input x ∈ X . We are given a

training set of i.i.d. sample pairs D = {X ,Y } = {(xi , yi )}Ni=1, (xi , yi ) ∼ p(x , y).

In classification problems, the target space Y consists of a finite set of C classes.

In regression, Y is continuous, e.g. Y = RK .

We view a DNN as a function fθ : X → U , parameterized by θ ∈ RP , that maps

an input x ∈ X to an output fθ(x) ∈ U .
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1. Introduction - Aleatoric uncertainty

• Given an input x , the “correct” value of y is not always obvious (what is the

correct classification target for an image containing both a cat and a dog?).

• Aleatoric uncertainty captures this inherent and irreducible data uncertainty.

• Input-dependent aleatoric uncertainty is present whenever we expect the targets

to be inherently more uncertain for some inputs.
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1. Introduction - Aleatoric uncertainty

• This is true e.g. in 3D object detection, where the estimated location of distant

objects generally is expected be more uncertain.
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1. Introduction - Aleatoric uncertainty

• This is also true in semantic segmentation, where image pixels at object

boundaries are inherently ambiguous.
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1. Introduction - Epistemic uncertainty

• Epistemic uncertainty accounts for uncertainty in the DNN model parameters.

• Large epistemic uncertainty is present when a large set of model parameters

explains the data (almost) equally well.
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2. Predictive uncertainty estimation using Bayesian deep learning

The task is to predict a target value y ∈ Y given an input x ∈ X . We are given a

training set of i.i.d. sample pairs D = {X ,Y } = {(xi , yi )}Ni=1, (xi , yi ) ∼ p(x , y).

We view a DNN as a function fθ : X → U , parameterized by θ ∈ RP , that maps

an input x ∈ X to an output fθ(x) ∈ U .

• To estimate input-dependent aleatoric uncertainty, it is enough to:

• Let a DNN fθ output the parameters of some probability distribution, creating a

parametric model p(y |x , θ) of the conditional distribution.

• Find the maximum-likelihood estimate of the model parameters, θ̂MLE, by

minimizing the negative log-likelihood − log p(Y |X , θ) = −
∑N

i=1 log p(yi |xi , θ).

• Given x? at test time, the DNN then predicts the distribution p(y?|x?, θ̂MLE)

over y?, capturing aleatoric uncertainty.
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2. Predictive uncertainty estimation using BDL - Aleatoric uncertainty

• In classification, a categorical model is commonly used:

p(y |x , θ) = Cat(y ; sθ(x)), sθ(x) = Softmax(fθ(x)). (1)

• − log p(Y |X , θ) corresponds to the standard cross-entropy loss.

• In regression, a Gaussian model can be used (1D case):

p(y |x , θ) = N
(
y ;µθ(x), σ2

θ(x)
)
, fθ(x) = [µθ(x) log σ2

θ(x) ]T ∈ R2. (2)

• − log p(Y |X , θ) corresponds to the following loss:

L(θ) =
1

N

N∑
i=1

(yi − µθ(xi ))2

σ2
θ(xi )

+ log σ2
θ(xi ).
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2. Predictive uncertainty estimation using BDL - Epistemic uncertainty

• Epistemic uncertainty can be estimated in a principled manner by performing

Bayesian inference.

The posterior p(θ|D) ∝ p(Y |X , θ)p(θ) is then utilized to

obtain the predictive posterior distribution:

p(y?|x?,D) =

∫
p(y?|x?, θ)p(θ|D)dθ ≈ 1

M

M∑
i=1

p(y?|x?, θ(i)), θ(i) ∼ p(θ|D) ,

which captures both aleatoric and epistemic uncertainty.

• In practice, an approximate posterior q(θ) ≈ p(θ|D) has to be used, resulting in:

p̂(y?|x?,D) ,
1

M

M∑
i=1

p(y?|x?, θ(i)), θ(i) ∼ q(θ). (3)
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3. Illustrative example

We consider the following 1D regression problem:

y ∼ N
(
µ(x), σ2(x)

)
, µ(x) = sin(x), σ(x) =

0.15

1 + e−x
.

(a) True data generator.
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(b) Training dataset. 16/60



3. Illustrative example - Direct regression

• Following the conventional regression approach, a small DNN trained to directly

predict targets, y? = fθ̂(x?), via the L2 loss is able to regress the mean for

x? ∈ [−3, 3], but fails to capture any notion of uncertainty:
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0

1

2

3

4

17/60



3. Illustrative example - Gaussian model, maximum-likelihood

• A corresponding Gaussian DNN model (2) trained via maximum-likelihood

correctly accounts for aleatoric uncertainty, but generates overly confident

predictions for inputs |x?| > 3 not seen during training:
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1
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3
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3. Illustrative example - Gaussian model, approximate Bayesian inference

• A Gaussian DNN model trained via approximate Bayesian inference (3), with

M = 1 000 samples obtained via HMC [11], is additionally able to predict more

reasonable uncertainties in the region where no training data was available:
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4. Ensembling as approximate Bayesian inference

Ensembling: create a parametric model p(y |x , θ) using a DNN fθ, learn M

point estimates {θ̂(m)}Mm=1 by repeatedly minimizing− log p(Y |X , θ) with random

initialization, and average over the models to obtain the predictive distribution:

p̂(y?|x?) ,
1

M

M∑
m=1

p(y?|x?, θ̂(m)). (4)

Approximate Bayesian inference:

p̂(y?|x?,D) ,
1

M

M∑
i=1

p(y?|x?, θ(i)), θ(i) ∼ q(θ) ≈ p(θ|D). (5)

• Since {θ̂(m)}Mm=1 always can be seen as samples from some distribution q̂(θ), we

note that (4) and (5) are virtually identical.
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4. Ensembling as approximate Bayesian inference

• Ensembling can thus naturally be viewed as approximate Bayesian inference.

The

level of approximation is determined by the ensemble size M and how well the

implicit sampling distribution q̂(θ) approximates the posterior p(θ|D).

• Since p(Y |X , θ) is highly multi-modal for DNNs, so is p(θ|D) ∝ p(Y |X , θ)p(θ).

• Also, by minimizing − log p(Y |X , θ) multiple times using SGD, starting from

randomly chosen initial points, we are likely to find many different local optima.

• Ensembling can thus generate a compact set of samples {θ̂(m)}Mm=1 that captures

the important aspect of multi-modality in p(θ|D).
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4. Ensembling as approximate Bayesian inference - Illustrative example

• On the 1D regression problem, we observe that ensembling provides reasonable

approximations to HMC [11], even for relatively small values of M:
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(a) HMC [11], M = 1 000.
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(b) Ensembling, M = 16.
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5. Experiments

• Contributions:

• We propose an evaluation framework for predictive uncertainty estimation that is

specifically designed to test the robustness required in real-world vision applications.

• We perform an extensive comparison of ensembling and MC-dropout on the

tasks of depth completion and street-scene semantic segmentation.

MC-dropout: simple and scalable method for epistemic uncertainty estimation.

Entails using dropout also at test time and averaging M stochastic forward passes

on the same input. Can be interpreted as performing variational inference [5, 8].
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5. Experiments - Evaluation

• Our evaluation is motivated by real-world conditions found e.g. in automotive

applications, where robustness to varying environments and weather conditions is

required to ensure safety.

• Since images captured in these different circumstances could all represent

distinctly different regions of the vast input image space, it is infeasible to ensure

that all encountered inputs will be well-represented by the training data. Thus, we

argue that robustness to out-of-domain inputs is crucial.

• To simulate these challenging conditions and test the required robustness, we

train models exclusively on synthetic data and evaluate the predictive

uncertainty on real-world data.
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5. Experiments - Evaluation

• To provide a deeper and more fair analysis, we study all metrics as functions of

the number of samples M, not just for a fixed value.

• To improve rigour of our evaluation, we repeat each experiment multiple times

and report results together with the observed variation.
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5.1. Illustrative toy problems

• First, we conduct experiments on illustrative toy problems to gain insights into

how ensembling and MC-dropout fare against other approximate Bayesian

inference methods.

• We compare with SGLD [13] and SGHMC [2], which are both Stochastic Gradient

MCMC (SG-MCMC) [10] methods.

• We evaluate the methods by quantitatively measuring how well the obtained

predictive distributions approximate that of HMC [11] with M = 1 000 samples

and prior p(θ) = N (0, IP).

• We thus take as our metric the KL divergence DKL(p ‖ pHMC) with respect to

this target predictive distribution pHMC.

• Note that HMC is considered a “gold standard” method for approximate Bayesian

inference, but does not scale to large DNNs or large-scale datasets.
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5.1. Illustrative toy problems - Regression

• For regression, we study the previously defined 1D problem:

(a) True data generator.
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(c) HMC [11] “ground truth”.
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5.1. Illustrative toy problems - Classification

• For classification, we study the following binary classification problem:
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(b) Training dataset. (c) HMC [11] “ground truth”.
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5.1. Illustrative toy problems - Results
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(a) Regression.
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(b) Classification.

• We observe that ensembling consistently outperforms the compared methods,

and MC-dropout in particular.

31/60



5.1. Illustrative toy problems - Qualitative results
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(a) HMC [11], M = 1 000.
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(b) Ensembling, M = 16.

• We observe that ensembling provides reasonable approximations to HMC [11],

even for relatively small values of M.
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5.1. Illustrative toy problems - Qualitative results

(a) HMC [11], M = 1 000. (b) Ensembling, M = 16.

• We observe that ensembling provides reasonable approximations to HMC [11],

even for relatively small values of M.
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5.2. Depth completion

• In depth completion, we are given an image ximg ∈ Rh×w×3 and an associated

sparse depth map xsparse ∈ Rh×w . Only non-zero pixels of xsparse correspond to

LiDAR depth measurements, projected onto the image plane.

• The goal is to predict a dense depth map y ∈ Rh×w of the scene.
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5.2. Depth completion - Datasets

• We utilize the KITTI depth completion [6, 12] and Virtual KITTI [4] datasets.

• We train on Virtual KITTI (18 930 examples) and evaluate on KITTI depth

completion (1 000 validation examples).

35/60



5.2. Depth completion - Datasets

• We utilize the KITTI depth completion [6, 12] and Virtual KITTI [4] datasets.

• We train on Virtual KITTI (18 930 examples) and evaluate on KITTI depth

completion (1 000 validation examples).

35/60



5.2. Depth completion - Model

• We use the DNN model presented by Ma et al. [9].

• The inputs ximg, xsparse are separately processed by initial convolutional layers,

concatenated and fed to an encoder-decoder architecture based on ResNet34.

• We employ the Gaussian model (2) by duplicating the final convolutional layer,

outputting µ ∈ Rh×w and log σ2 ∈ Rh×w instead of the plain depth ŷ ∈ Rh×w .
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5.2. Depth completion - Evaluation metrics

• We evaluate the methods in terms of quality of the estimated predictive

uncertainty, as measured by the relative AUSE metric [7] and the absolute

measure of uncertainty calibration.

• AUSE: Area Under the Sparsification Error curve, measures how well the ordering

of predictions induced by the estimated predictive uncertainty (sorted from least

to most uncertain) matches the “oracle” ordering in terms of true prediction error.

Note that a perfect AUSE score can be achieved even if the true predictive

uncertainty is consistently underestimated.

• Calibration: our model outputs a Gaussian for each pixel, and we can thus

construct prediction intervals of confidence level p ∈]0, 1[ using the corresponding

quantiles. The proportion of pixels for which the prediction interval covers the

target is expected to equal p ∈]0, 1[ for a perfectly calibrated model.

• We also evaluate in terms of the standard RMSE metric.
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5.2. Depth completion - Results
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(a) AUSE, lower is better.
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(b) Calibration (AUCE), lower is better.
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(c) RMSE, lower is better.

• We observe in (a) that ensembling consistently outperforms MC-dropout in terms

of AUSE. However, the curves decrease as a function of M in a similar manner.

• A ranking can be more readily conducted based on (b), where we observe a clearly

improving trend for ensembling, whereas MC-dropout gets progressively worse.
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5.2. Depth completion - Results, sparsification, ensembling

(a) M = 1. (b) M = 2. (c) M = 4.

(d) M = 8. (e) M = 16. (f) M = 32.
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5.2. Depth completion - Results, calibration, ensembling

(a) M = 1. (b) M = 2. (c) M = 4.

(d) M = 8. (e) M = 16. (f) M = 32.
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5.2. Depth completion - Results, calibration, MC-dropout

(a) M = 1. (b) M = 2. (c) M = 4.

(d) M = 8. (e) M = 16.
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5.3. Street-scene semantic segmentation

• In street-scene semantic segmentation, we are given an image x ∈ Rh×w×3.

• The goal is to predict y of size h × w , in which each pixel is assigned to one of C

different class labels (road, sidewalk, car, etc.).
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5.3. Street-scene semantic segmentation - Datasets

• We utilize the Cityscapes [3] and Synscapes [14] datasets.

• We train on Synscapes (2 975 examples) and evaluate on Cityscapes (500

validation examples).
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5.3. Street-scene semantic segmentation - Model

• We use the DeepLabv3 DNN model presented by Chen et al. [1].

• The input image x is processed by a ResNet101 and then fed to an ASPP module,

outputting logits at 1/8 of the original resolution. These are then upsampled to

image resolution using bilinear interpolation.

• The conventional Categorical model (1) is thus used for each pixel.
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5.3. Street-scene semantic segmentation - Evaluation metrics

• We evaluate the methods in terms of quality of the estimated predictive

uncertainty, as measured by the relative AUSE metric [7] and the absolute

measure of uncertainty calibration.

• Calibration: all predictions are partitioned into L bins based on the maximum

assigned confidence. For each bin, the difference between the average predicted

confidence and the actual accuracy is then computed, and ECE (Expected

Calibration Error) is obtained as the weighted average of these differences.

• We also evaluate in terms of the standard mIoU metric.
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5.3. Street-scene semantic segmentation - Results
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(c) mIoU, higher is better.

• Note that M = 1 corresponds to the baseline of only estimating aleatoric

uncertainty. The metrics clearly improve as functions of M for both methods,

demonstrating the importance of epistemic uncertainty estimation.

• We observe that the rate of improvement is generally greater for ensembling.
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5.3. Semantic segmentation - Results, sparsification, ensembling

(a) M = 1. (b) M = 2. (c) M = 4.

(d) M = 8. (e) M = 16.
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5.3. Semantic segmentation - Results, calibration, ensembling

(a) M = 1. (b) M = 2. (c) M = 4.

(d) M = 8. (e) M = 16.
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5.3. Semantic segmentation - Results, calibration, MC-dropout

(a) M = 1. (b) M = 2. (c) M = 4.

(d) M = 8. (e) M = 16.
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5.4. Qualitative results

• Video: https://youtu.be/CabPVqtzsOI.

• All shown results are for ensembling with M = 8.
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5.4. Qualitative results - Depth completion

• Video: https://youtu.be/CabPVqtzsOI.

• Depth completion: 8:22 - 14:18.

• Trained on Virtual KITTI, evaluated on Virtual KITTI (synthetic to synthetic): 8:22.

• Trained on Virtual KITTI, evaluated on KITTI (synthetic to real): 9:26.

• The input image, input sparse depth map, ground truth depth map, prediction,

predictive uncertainty, aleatoric uncertainty and epistemic uncertainty are

visualized.

• Black: minimum uncertainty, white: maximum uncertainty.
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5.4. Qualitative results - Street-scene semantic segmentation

• Video: https://youtu.be/CabPVqtzsOI.

• Street-scene semantic segmentation: 0:00 - 8:22.

• Trained on Cityscapes, evaluated on Cityscapes (real to real): 0:00.

• Trained on Synscapes, evaluated on Cityscapes (synthetic to real): 2:30.

• Trained on Synscapes, evaluated on Synscapes (synthetic to synthetic): 5:00.

• Trained on Cityscapes, evaluated on Synscapes (real to synthetic): 6:41

• On Cityscapes, the input image, prediction and predictive entropy are visualized.

• On Synscapes, the input image, ground truth, prediction and predictive entropy

are visualized.

• Black: minimum uncertainty, white: maximum uncertainty.
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6. Discussion

• The results of our comparison suggest that ensembling consistently provides

more reliable and useful uncertainty estimates than MC-dropout.

• MC-dropout has a large design-space compared to ensembling, and while careful

tuning of MC-dropout potentially could close the performance gap, the simplicity

and general applicability of ensembling must be considered key strengths.

• The main drawback of both methods is the computational cost at test time that
grows linearly with M, limiting real-time applicability.

• Here, future work includes exploring the effect of model pruning techniques on

predictive uncertainty quality. For ensembling, sharing early stages of the DNN

among ensemble members is also an interesting future direction.

• A weakness of ensembling is the additional training required, which also scales

linearly with M. The training of different ensemble members can however be

performed in parallel, making it less of an issue in practice given appropriate

computing infrastructure.
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7. Conclusion

• We noted that ensembling naturally can be viewed as an approximate Bayesian

inference method, and provided some intuition for why it should be a reasonable

approximation specifically in the case of DNNs.

• We proposed an evaluation framework for predictive uncertainty estimation that

is specifically designed to test the robustness required in real-world computer

vision applications.

• We performed an extensive comparison of ensembling and MC-dropout on the

tasks of depth completion and street-scene semantic segmentation, the results of

which suggest that ensembling consistently provides more reliable and useful

predictive uncertainty estimates.
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