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What is the problem?

▶ While deep learning has become the go-to approach in computer vision, these
models fail to properly capture the uncertainty inherent in their predictions.
Bayesian deep learning addresses this issue in a principled manner. Predictive
uncertainty is then decomposed into aleatoric and epistemic uncertainty.

▶ Aleatoric uncertainty captures inherent and irreducible data noise, and can be
estimated by directly predicting the conditional distribution p(y|x). Estimating
epistemic uncertainty, which accounts for uncertainty in the model parameters,
can mitigate model over-confidence and is thus of great importance.

▶ While epistemic uncertainty estimation has proven to be highly challenging,
especially for large-scale models employed in real-world computer vision tasks,
scalable techniques have recently emerged.

▶ The research community however lacks a common and comprehensive
evaluation framework for such methods. Both researchers and practitioners are
currently thus unable to properly assess and compare competing methods.

Our contributions

▶ We propose a comprehensive evaluation framework for scalable epistemic
uncertainty estimation methods in deep learning. It is specifically designed to
test the robustness required in real-world computer vision applications.

▶ Our proposed framework employs state-of-the-art models on the tasks of
depth completion (regression) and semantic segmentation (classification).

▶ We provide the first properly extensive and conclusive comparison of the two
current state-of-the-art scalable methods: ensembling andMC-dropout. Our
comparison demonstrates that ensembling consistently provides more reliable
and practically useful uncertainty estimates.

▶ Publicly available source code: github.com/fregu856/evaluating_bdl.

Illustrative toy problems - Regression
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Figure 4: Results for the illustrative toy regression and classification problems. (a) Regression: quantitative
results. (b) Classification: quantitative results. The two plots show the KL divergence between the predictive
distribution estimated by each method and the HMC “ground truth”, for different number of samples M . (c)
Regression: qualitative results for ensembling. (d) Classification: qualitative results for ensembling.

by real-world conditions found e.g. in automotive ap-
plications, where robustness to varying environments
and weather conditions is required to ensure safety.
Since images captured in these different circumstances
could all represent distinctly different regions of the
vast input image space, it is infeasible to ensure that
all encountered inputs will be well-represented by the
training data. Thus, we argue that robustness to
out-of-domain inputs is crucial in such applications.
To simulate these challenging conditions and test the
robustness required for such real-world scenarios, we
train all models on synthetic data and evaluate them
on real-world data. To improve rigour of our evalua-
tion, we repeat each experiment multiple times and
report results together with the observed variation.
A more detailed description of all results are found
in the Appendix (Appendix B.3, C.2, D.2). All ex-
periments are implemented in PyTorch (Paszke et al.,
2017). Source code will be made publicly available.

4.1 Illustrative Toy Problems

We first present results on illustrative toy problems
to gain insights into how ensembling and MC-dropout
fare against other approximate Bayesian inference
methods. For regression, we conduct experiments on
the 1D problem defined in (5) and visualized in Fig-
ure 2. We use the Gaussian model (2) with two sep-
arate feed-forward neural networks outputting µθ(x)
and log σ2

θ(x). We evaluate the methods by quan-
titatively measuring how well the obtained predic-
tive distributions approximate that of the “gold stan-
dard” HMC with M =1 000 samples and prior p(θ) =
N (0, IP ). We thus consider the predictive distribu-
tion visualized in Figure 2d ground truth, and take as
our metric the KL divergence DKL(p ‖ pHMC) with
respect to this target distribution pHMC. For classifi-
cation, we conduct experiments on the binary classifi-
cation problem in Figure 3. The true data generator is
visualized in Figure 3a, where red and blue represents
the two classes. The training dataset contains 520 ex-

amples of each class, and is visualized in Figure 3b.
We use the Categorical model (1) with a feed-forward
neural network. As for regression, we quantitatively
measure how well the obtained predictive distributions
approximate that of HMC, which is visualized in Fig-
ure 3c. Further details are provided in Appendix B.

Results A comparison of ensembling, MC-dropout,
SGLD and SGHMC in terms of DKL(p ‖ pHMC) is
found in Figure 4a, 4b. The Adam optimizer (Kingma
and Ba, 2014) is here used for both ensembling and
MC-dropout. We observe that ensembling consistently
outperforms the compared methods, and MC-dropout
in particular. This result is qualitatively supported
by visualized predictive distributions found in Ap-
pendix B.5. Example predictive distributions for en-
sembling with M=16 are shown in Figure 4c, 4d. We
observe that ensembling provides reasonable approxi-
mations to HMC, even for quite small values of M .

4.2 Depth Completion

In depth completion, we are given an image ximg ∈
Rh×w×3 from a forward-facing camera and an associ-
ated sparse depth map xsparse ∈ Rh×w. Only non-zero
pixels of xsparse correspond to LiDAR depth measure-
ments, projected onto the image plane. The goal is
to predict a dense depth map y ∈ Rh×w of the scene.
We utilize the KITTI depth completion (Geiger et al.,
2013; Uhrig et al., 2017) and Virtual KITTI (Gaidon
et al., 2016) datasets. KITTI depth completion con-
tains more than 80 000 images ximg, sparse depth maps
xsparse and semi-dense target maps y. There are 1 000
selected validation examples, which we use for eval-
uation. Only about 4% of the pixels in xsparse are
non-zero and thus correspond to depth measurements.
The semi-dense target maps are created by merging
the LiDAR scans from 11 consecutive frames into one,
producing y in which roughly 30% of the pixels are
non-zero. Virtual KITTI contains synthetic images
ximg and dense depth maps xdense extracted from 5
sequences in a virtual world. It contains 2 126 unique

▶ Ensembling, M = 64:

▶ MC-dropout, M = 64:

Illustrative toy problems - Classification
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Figure 4: Results for the illustrative toy regression and classification problems. (a) Regression: quantitative
results. (b) Classification: quantitative results. The two plots show the KL divergence between the predictive
distribution estimated by each method and the HMC “ground truth”, for different number of samples M . (c)
Regression: qualitative results for ensembling. (d) Classification: qualitative results for ensembling.

by real-world conditions found e.g. in automotive ap-
plications, where robustness to varying environments
and weather conditions is required to ensure safety.
Since images captured in these different circumstances
could all represent distinctly different regions of the
vast input image space, it is infeasible to ensure that
all encountered inputs will be well-represented by the
training data. Thus, we argue that robustness to
out-of-domain inputs is crucial in such applications.
To simulate these challenging conditions and test the
robustness required for such real-world scenarios, we
train all models on synthetic data and evaluate them
on real-world data. To improve rigour of our evalua-
tion, we repeat each experiment multiple times and
report results together with the observed variation.
A more detailed description of all results are found
in the Appendix (Appendix B.3, C.2, D.2). All ex-
periments are implemented in PyTorch (Paszke et al.,
2017). Source code will be made publicly available.

4.1 Illustrative Toy Problems

We first present results on illustrative toy problems
to gain insights into how ensembling and MC-dropout
fare against other approximate Bayesian inference
methods. For regression, we conduct experiments on
the 1D problem defined in (5) and visualized in Fig-
ure 2. We use the Gaussian model (2) with two sep-
arate feed-forward neural networks outputting µθ(x)
and log σ2

θ(x). We evaluate the methods by quan-
titatively measuring how well the obtained predic-
tive distributions approximate that of the “gold stan-
dard” HMC with M =1 000 samples and prior p(θ) =
N (0, IP ). We thus consider the predictive distribu-
tion visualized in Figure 2d ground truth, and take as
our metric the KL divergence DKL(p ‖ pHMC) with
respect to this target distribution pHMC. For classifi-
cation, we conduct experiments on the binary classifi-
cation problem in Figure 3. The true data generator is
visualized in Figure 3a, where red and blue represents
the two classes. The training dataset contains 520 ex-

amples of each class, and is visualized in Figure 3b.
We use the Categorical model (1) with a feed-forward
neural network. As for regression, we quantitatively
measure how well the obtained predictive distributions
approximate that of HMC, which is visualized in Fig-
ure 3c. Further details are provided in Appendix B.

Results A comparison of ensembling, MC-dropout,
SGLD and SGHMC in terms of DKL(p ‖ pHMC) is
found in Figure 4a, 4b. The Adam optimizer (Kingma
and Ba, 2014) is here used for both ensembling and
MC-dropout. We observe that ensembling consistently
outperforms the compared methods, and MC-dropout
in particular. This result is qualitatively supported
by visualized predictive distributions found in Ap-
pendix B.5. Example predictive distributions for en-
sembling with M=16 are shown in Figure 4c, 4d. We
observe that ensembling provides reasonable approxi-
mations to HMC, even for quite small values of M .

4.2 Depth Completion

In depth completion, we are given an image ximg ∈
Rh×w×3 from a forward-facing camera and an associ-
ated sparse depth map xsparse ∈ Rh×w. Only non-zero
pixels of xsparse correspond to LiDAR depth measure-
ments, projected onto the image plane. The goal is
to predict a dense depth map y ∈ Rh×w of the scene.
We utilize the KITTI depth completion (Geiger et al.,
2013; Uhrig et al., 2017) and Virtual KITTI (Gaidon
et al., 2016) datasets. KITTI depth completion con-
tains more than 80 000 images ximg, sparse depth maps
xsparse and semi-dense target maps y. There are 1 000
selected validation examples, which we use for eval-
uation. Only about 4% of the pixels in xsparse are
non-zero and thus correspond to depth measurements.
The semi-dense target maps are created by merging
the LiDAR scans from 11 consecutive frames into one,
producing y in which roughly 30% of the pixels are
non-zero. Virtual KITTI contains synthetic images
ximg and dense depth maps xdense extracted from 5
sequences in a virtual world. It contains 2 126 unique

▶ Ensembling, M = 64:

▶ MC-dropout, M = 64:

Street-scene semantic segmentation

▶ Given an image x ∈ Rh×w×3, predict y of size h× w, in which each pixel is
assigned to one of C classes (road, car, etc.). Models are trained on synthetic
data and evaluated on real data, testing robustness to out-of-domain inputs.

▶ Metrics for evaluation of uncertainty estimation quality:
▷ AUSE: relative measure that reveals how well the estimated uncertainty can
be used to sort predictions from worst (large true prediction error) to best.

▷ ECE: absolute measure in terms of calibration. A well-calibrated model is not
over-confident nor over-conservative.
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Figure 6: Quantitative results for street-scene semantic segmentation. The plots show a comparison of ensembling
and MC-dropout in terms of AUSE (lower is better) (a), ECE (lower is better) (b) and mIoU (higher is better)
(c) on the Cityscapes validation dataset, for different number of samples M .

use the DeepLabv3 DNN model presented by Chen
et al. (2017). The input image x is processed by a
ResNet101 (He et al., 2016), outputting a feature map
of stride 8. The feature map is further processed by
an ASPP module and a 1× 1 convolutional layer, out-
putting logits at 1/8 of the original resolution. These
are then upsampled to image resolution using bilinear
interpolation. The conventional Categorical model (1)
is thus used for each pixel. We base our implemen-
tation on the one by Yuan and Wang (2018), and
also follow the same basic training procedure, see Ap-
pendix D.1 for details. For reference, the model ob-
tains an mIoU (Long et al., 2015) of 76.04% when
trained on Cityscapes and evaluated on its validation
set. For the MC-dropout comparison, we take inspira-
tion from Mukhoti and Gal (2018) and place a dropout
layer with p = 0.5 after the four last ResNet blocks.

Evaluation Metrics As for depth completion, we
evaluate the methods in terms of the AUSE metric. In
this classification setting, we compare the “oracle” or-
dering with the one induced by the predictive entropy.
We compute AUSE in terms of Brier score and based
on all pixels in the evaluation dataset. We also evalu-
ate in terms of calibration by the Expected Calibration
Error (ECE) metric (Guo et al., 2017; Naeini et al.,
2015). All predictions are here partitioned into L bins
based on the maximum assigned confidence. For each
bin, the difference between the average predicted con-
fidence and the actual accuracy is then computed, and
ECE is obtained as the weighted average of these dif-
ferences. We use L = 10 bins of equal size.

Results A comparison of ensembling and MC-
dropout in terms of AUSE, ECE and mIoU on the
Cityscapes validation dataset is found in Figure 6. We
observe that the metrics clearly improve as functions
of M for both ensembling and MC-dropout, demon-
strating the importance of epistemic uncertainty esti-
mation. The rate of improvement is generally greater
for ensembling. For ECE, we observe in Figure 6b
a drastic improvement for ensembling as M is in-
creased, followed by a distinct plateau. According to

the condensed reliability diagrams in Appendix D.3,
this corresponds to a transition from clear model
over-confidence to slight over-conservatism. For MC-
dropout, the corresponding diagrams suggest a stagna-
tion while the model still is somewhat over-confident.

5 CONCLUSION

We proposed a comprehensive evaluation framework
for scalable epistemic uncertainty estimation meth-
ods in deep learning. The proposed framework is
specifically designed to test the robustness required in
real-world computer vision applications. We applied
our proposed framework and provided the first prop-
erly extensive and conclusive comparison of ensem-
bling and MC-dropout, the results of which demon-
strates that ensembling consistently provides more re-
liable uncertainty estimates. We attribute the success
of ensembling to its ability, due to the random ini-
tialization, to capture the important aspect of multi-
modality present in the posterior distribution p(θ|D)
of DNNs. MC-dropout has a large design-space com-
pared to ensembling, and while careful tuning of MC-
dropout potentially could close the performance gap
on individual tasks, the simplicity and general applica-
bility of ensembling must be considered key strengths.
The main drawback of both methods is the compu-
tational cost at test time that grows linearly with
M , limiting real-time applicability. Here, future work
includes exploring the effect of model pruning tech-
niques (Yang et al., 2017) on predictive uncertainty
quality. For ensembling, sharing early stages of the
DNN among ensemble members is also an interesting
future direction. A weakness of ensembling is the ad-
ditional training required, which also scales linearly
with M . The training of different ensemble members
can however be performed in parallel, making it less
of an issue in practice given appropriate computing
infrastructure. In conclusion, our work suggests that
ensembling should be considered the new go-to method
for scalable epistemic uncertainty estimation.
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Figure 6: Quantitative results for street-scene semantic segmentation. The plots show a comparison of ensembling
and MC-dropout in terms of AUSE (lower is better) (a), ECE (lower is better) (b) and mIoU (higher is better)
(c) on the Cityscapes validation dataset, for different number of samples M .

use the DeepLabv3 DNN model presented by Chen
et al. (2017). The input image x is processed by a
ResNet101 (He et al., 2016), outputting a feature map
of stride 8. The feature map is further processed by
an ASPP module and a 1× 1 convolutional layer, out-
putting logits at 1/8 of the original resolution. These
are then upsampled to image resolution using bilinear
interpolation. The conventional Categorical model (1)
is thus used for each pixel. We base our implemen-
tation on the one by Yuan and Wang (2018), and
also follow the same basic training procedure, see Ap-
pendix D.1 for details. For reference, the model ob-
tains an mIoU (Long et al., 2015) of 76.04% when
trained on Cityscapes and evaluated on its validation
set. For the MC-dropout comparison, we take inspira-
tion from Mukhoti and Gal (2018) and place a dropout
layer with p = 0.5 after the four last ResNet blocks.

Evaluation Metrics As for depth completion, we
evaluate the methods in terms of the AUSE metric. In
this classification setting, we compare the “oracle” or-
dering with the one induced by the predictive entropy.
We compute AUSE in terms of Brier score and based
on all pixels in the evaluation dataset. We also evalu-
ate in terms of calibration by the Expected Calibration
Error (ECE) metric (Guo et al., 2017; Naeini et al.,
2015). All predictions are here partitioned into L bins
based on the maximum assigned confidence. For each
bin, the difference between the average predicted con-
fidence and the actual accuracy is then computed, and
ECE is obtained as the weighted average of these dif-
ferences. We use L = 10 bins of equal size.

Results A comparison of ensembling and MC-
dropout in terms of AUSE, ECE and mIoU on the
Cityscapes validation dataset is found in Figure 6. We
observe that the metrics clearly improve as functions
of M for both ensembling and MC-dropout, demon-
strating the importance of epistemic uncertainty esti-
mation. The rate of improvement is generally greater
for ensembling. For ECE, we observe in Figure 6b
a drastic improvement for ensembling as M is in-
creased, followed by a distinct plateau. According to

the condensed reliability diagrams in Appendix D.3,
this corresponds to a transition from clear model
over-confidence to slight over-conservatism. For MC-
dropout, the corresponding diagrams suggest a stagna-
tion while the model still is somewhat over-confident.

5 CONCLUSION

We proposed a comprehensive evaluation framework
for scalable epistemic uncertainty estimation meth-
ods in deep learning. The proposed framework is
specifically designed to test the robustness required in
real-world computer vision applications. We applied
our proposed framework and provided the first prop-
erly extensive and conclusive comparison of ensem-
bling and MC-dropout, the results of which demon-
strates that ensembling consistently provides more re-
liable uncertainty estimates. We attribute the success
of ensembling to its ability, due to the random ini-
tialization, to capture the important aspect of multi-
modality present in the posterior distribution p(θ|D)
of DNNs. MC-dropout has a large design-space com-
pared to ensembling, and while careful tuning of MC-
dropout potentially could close the performance gap
on individual tasks, the simplicity and general applica-
bility of ensembling must be considered key strengths.
The main drawback of both methods is the compu-
tational cost at test time that grows linearly with
M , limiting real-time applicability. Here, future work
includes exploring the effect of model pruning tech-
niques (Yang et al., 2017) on predictive uncertainty
quality. For ensembling, sharing early stages of the
DNN among ensemble members is also an interesting
future direction. A weakness of ensembling is the ad-
ditional training required, which also scales linearly
with M . The training of different ensemble members
can however be performed in parallel, making it less
of an issue in practice given appropriate computing
infrastructure. In conclusion, our work suggests that
ensembling should be considered the new go-to method
for scalable epistemic uncertainty estimation.
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Figure 6: Quantitative results for street-scene semantic segmentation. The plots show a comparison of ensembling
and MC-dropout in terms of AUSE (lower is better) (a), ECE (lower is better) (b) and mIoU (higher is better)
(c) on the Cityscapes validation dataset, for different number of samples M .

use the DeepLabv3 DNN model presented by Chen
et al. (2017). The input image x is processed by a
ResNet101 (He et al., 2016), outputting a feature map
of stride 8. The feature map is further processed by
an ASPP module and a 1× 1 convolutional layer, out-
putting logits at 1/8 of the original resolution. These
are then upsampled to image resolution using bilinear
interpolation. The conventional Categorical model (1)
is thus used for each pixel. We base our implemen-
tation on the one by Yuan and Wang (2018), and
also follow the same basic training procedure, see Ap-
pendix D.1 for details. For reference, the model ob-
tains an mIoU (Long et al., 2015) of 76.04% when
trained on Cityscapes and evaluated on its validation
set. For the MC-dropout comparison, we take inspira-
tion from Mukhoti and Gal (2018) and place a dropout
layer with p = 0.5 after the four last ResNet blocks.

Evaluation Metrics As for depth completion, we
evaluate the methods in terms of the AUSE metric. In
this classification setting, we compare the “oracle” or-
dering with the one induced by the predictive entropy.
We compute AUSE in terms of Brier score and based
on all pixels in the evaluation dataset. We also evalu-
ate in terms of calibration by the Expected Calibration
Error (ECE) metric (Guo et al., 2017; Naeini et al.,
2015). All predictions are here partitioned into L bins
based on the maximum assigned confidence. For each
bin, the difference between the average predicted con-
fidence and the actual accuracy is then computed, and
ECE is obtained as the weighted average of these dif-
ferences. We use L = 10 bins of equal size.

Results A comparison of ensembling and MC-
dropout in terms of AUSE, ECE and mIoU on the
Cityscapes validation dataset is found in Figure 6. We
observe that the metrics clearly improve as functions
of M for both ensembling and MC-dropout, demon-
strating the importance of epistemic uncertainty esti-
mation. The rate of improvement is generally greater
for ensembling. For ECE, we observe in Figure 6b
a drastic improvement for ensembling as M is in-
creased, followed by a distinct plateau. According to

the condensed reliability diagrams in Appendix D.3,
this corresponds to a transition from clear model
over-confidence to slight over-conservatism. For MC-
dropout, the corresponding diagrams suggest a stagna-
tion while the model still is somewhat over-confident.

5 CONCLUSION

We proposed a comprehensive evaluation framework
for scalable epistemic uncertainty estimation meth-
ods in deep learning. The proposed framework is
specifically designed to test the robustness required in
real-world computer vision applications. We applied
our proposed framework and provided the first prop-
erly extensive and conclusive comparison of ensem-
bling and MC-dropout, the results of which demon-
strates that ensembling consistently provides more re-
liable uncertainty estimates. We attribute the success
of ensembling to its ability, due to the random ini-
tialization, to capture the important aspect of multi-
modality present in the posterior distribution p(θ|D)
of DNNs. MC-dropout has a large design-space com-
pared to ensembling, and while careful tuning of MC-
dropout potentially could close the performance gap
on individual tasks, the simplicity and general applica-
bility of ensembling must be considered key strengths.
The main drawback of both methods is the compu-
tational cost at test time that grows linearly with
M , limiting real-time applicability. Here, future work
includes exploring the effect of model pruning tech-
niques (Yang et al., 2017) on predictive uncertainty
quality. For ensembling, sharing early stages of the
DNN among ensemble members is also an interesting
future direction. A weakness of ensembling is the ad-
ditional training required, which also scales linearly
with M . The training of different ensemble members
can however be performed in parallel, making it less
of an issue in practice given appropriate computing
infrastructure. In conclusion, our work suggests that
ensembling should be considered the new go-to method
for scalable epistemic uncertainty estimation.

Depth completion

▶ Given an image ximg ∈ Rh×w×3 and an associated sparse depth map, predict a
dense depth map y ∈ Rh×w of the scene. Models are trained on synthetic data
and evaluated on real data, testing robustness to out-of-domain inputs.

▶ Metrics for evaluation of uncertainty estimation quality: AUSE and AUCE
(generalization of ECE to the regression setting).
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Figure 5: Quantitative results for depth completion. The plots show a comparison of ensembling and MC-
dropout in terms of AUSE (a), AUCE (b) and RMSE (c) on the KITTI depth completion validation dataset,
for different number of samples M . Lower is better for all three metrics.

frames, of which there are 10 different versions cor-
responding to various simulated weather and lighting
conditions. We take sequence 0002 as our validation
set, leaving a total of 18 930 training examples. We
create targets y for training by setting all pixels in
xdense corresponding to a depth > 80m to 0, and then
also randomly sample 5% of the remaining non-zero
pixels uniformly to create xsparse. We use the DNN
model presented by Ma et al. (2019). The inputs ximg,
xsparse are separately processed by initial convolutional
layers, concatenated and fed to an encoder-decoder ar-
chitecture based on ResNet34 (He et al., 2016). We
employ the Gaussian model (2) by duplicating the final
layer, outputting both µ ∈ Rh×w and log σ2 ∈ Rh×w
instead of only the predicted depth map ŷ ∈ Rh×w.
We also employ the same basic training procedure
as Ma et al. (2019) to train all our models, see Ap-
pendix C.1 for details. For the MC-dropout compari-
son, we take inspiration from Kendall et al. (2017) and
place a dropout layer with p = 0.5 after the three last
encoder blocks and the four first decoder blocks.

Evaluation Metrics We evaluate the methods in
terms of the Area Under the Sparsification Error curve
(AUSE) metric, as introduced by Ilg et al. (2018).
AUSE is a relative measure of the uncertainty estima-
tion quality, comparing the ordering of predictions in-
duced by the estimated predictive uncertainty (sorted
from least to most uncertain) with the “oracle” order-
ing in terms of the true prediction error. We compute
AUSE in terms of Root Mean Squared Error (RMSE)
and based on all pixels in the entire evaluation dataset.
A perfect AUSE score can be achieved even if the
true predictive uncertainty is consistently underesti-
mated. As an absolute measure of uncertainty esti-
mation quality, we therefor also evaluate the methods
in terms of calibration (Bröcker, 2009; Vaicenavicius
et al., 2019). Since our models output the mean µ ∈ R
and variance σ2 ∈ R of a Gaussian distribution for each
pixel, we can construct pixel-wise prediction intervals
µ±Φ−1(p+1

2 )σ of confidence level p ∈]0, 1[, where Φ is
the CDF of the standard normal distribution. When

computing the proportion of pixels for which the pre-
diction interval covers the true target y ∈ R, we expect
this value, denoted p̂, to equal p ∈]0, 1[ for a perfectly
calibrated model. We compute the absolute error with
respect to perfect calibration, |p− p̂|, for 100 values of
p ∈]0, 1[ and use the area under this curve as our met-
ric, which we call Area Under the Calibration Error
curve (AUCE). We also evaluate in terms of RMSE.

Results A comparison of ensembling and MC-
dropout in terms of AUSE, AUCE and RMSE on the
KITTI depth completion validation dataset is found
in Figure 5. We observe in Figure 5a that ensem-
bling consistently outperforms MC-dropout in terms
of AUSE. However, the curves decrease as a function of
M in a similar manner. Sparsification plots and spar-
sification error curves are found in Appendix C.3. A
ranking of the methods can be more readily conducted
based on Figure 5b, where we observe a clearly im-
proving trend as M increases for ensembling, whereas
MC-dropout gets progressively worse. This result is
qualitatively supported by the calibration plots found
in Appendix C.3. Note that M = 1 corresponds to the
baseline of only estimating aleatoric uncertainty.

4.3 Street-Scene Semantic Segmentation

In this task, we are given an image x ∈ Rh×w×3 from
a forward-facing camera. The goal is to predict y of
size h×w, in which each pixel is assigned to one of C
different class labels (road, sidewalk, car, etc.). We
utilize the popular Cityscapes (Cordts et al., 2016)
and recent Synscapes (Wrenninge and Unger, 2018)
datasets. Cityscapes contains 5 000 finely annotated
images, mainly collected in various German cities. The
annotations includes 30 class labels, but only C = 19
are used in the training of models. Its validation set
contains 500 examples, which we use for evaluation.
Synscapes contains 25 000 synthetic images, all cap-
tured in virtual urban environments. To match the
size of Cityscapes, we randomly select 2 975 of these
for training and 500 for validation. The images are an-
notated with the same class labels as Cityscapes. We
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Figure 5: Quantitative results for depth completion. The plots show a comparison of ensembling and MC-
dropout in terms of AUSE (a), AUCE (b) and RMSE (c) on the KITTI depth completion validation dataset,
for different number of samples M . Lower is better for all three metrics.
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layers, concatenated and fed to an encoder-decoder ar-
chitecture based on ResNet34 (He et al., 2016). We
employ the Gaussian model (2) by duplicating the final
layer, outputting both µ ∈ Rh×w and log σ2 ∈ Rh×w
instead of only the predicted depth map ŷ ∈ Rh×w.
We also employ the same basic training procedure
as Ma et al. (2019) to train all our models, see Ap-
pendix C.1 for details. For the MC-dropout compari-
son, we take inspiration from Kendall et al. (2017) and
place a dropout layer with p = 0.5 after the three last
encoder blocks and the four first decoder blocks.

Evaluation Metrics We evaluate the methods in
terms of the Area Under the Sparsification Error curve
(AUSE) metric, as introduced by Ilg et al. (2018).
AUSE is a relative measure of the uncertainty estima-
tion quality, comparing the ordering of predictions in-
duced by the estimated predictive uncertainty (sorted
from least to most uncertain) with the “oracle” order-
ing in terms of the true prediction error. We compute
AUSE in terms of Root Mean Squared Error (RMSE)
and based on all pixels in the entire evaluation dataset.
A perfect AUSE score can be achieved even if the
true predictive uncertainty is consistently underesti-
mated. As an absolute measure of uncertainty esti-
mation quality, we therefor also evaluate the methods
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diction interval covers the true target y ∈ R, we expect
this value, denoted p̂, to equal p ∈]0, 1[ for a perfectly
calibrated model. We compute the absolute error with
respect to perfect calibration, |p− p̂|, for 100 values of
p ∈]0, 1[ and use the area under this curve as our met-
ric, which we call Area Under the Calibration Error
curve (AUCE). We also evaluate in terms of RMSE.

Results A comparison of ensembling and MC-
dropout in terms of AUSE, AUCE and RMSE on the
KITTI depth completion validation dataset is found
in Figure 5. We observe in Figure 5a that ensem-
bling consistently outperforms MC-dropout in terms
of AUSE. However, the curves decrease as a function of
M in a similar manner. Sparsification plots and spar-
sification error curves are found in Appendix C.3. A
ranking of the methods can be more readily conducted
based on Figure 5b, where we observe a clearly im-
proving trend as M increases for ensembling, whereas
MC-dropout gets progressively worse. This result is
qualitatively supported by the calibration plots found
in Appendix C.3. Note that M = 1 corresponds to the
baseline of only estimating aleatoric uncertainty.

4.3 Street-Scene Semantic Segmentation

In this task, we are given an image x ∈ Rh×w×3 from
a forward-facing camera. The goal is to predict y of
size h×w, in which each pixel is assigned to one of C
different class labels (road, sidewalk, car, etc.). We
utilize the popular Cityscapes (Cordts et al., 2016)
and recent Synscapes (Wrenninge and Unger, 2018)
datasets. Cityscapes contains 5 000 finely annotated
images, mainly collected in various German cities. The
annotations includes 30 class labels, but only C = 19
are used in the training of models. Its validation set
contains 500 examples, which we use for evaluation.
Synscapes contains 25 000 synthetic images, all cap-
tured in virtual urban environments. To match the
size of Cityscapes, we randomly select 2 975 of these
for training and 500 for validation. The images are an-
notated with the same class labels as Cityscapes. We
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Figure 5: Quantitative results for depth completion. The plots show a comparison of ensembling and MC-
dropout in terms of AUSE (a), AUCE (b) and RMSE (c) on the KITTI depth completion validation dataset,
for different number of samples M . Lower is better for all three metrics.

frames, of which there are 10 different versions cor-
responding to various simulated weather and lighting
conditions. We take sequence 0002 as our validation
set, leaving a total of 18 930 training examples. We
create targets y for training by setting all pixels in
xdense corresponding to a depth > 80m to 0, and then
also randomly sample 5% of the remaining non-zero
pixels uniformly to create xsparse. We use the DNN
model presented by Ma et al. (2019). The inputs ximg,
xsparse are separately processed by initial convolutional
layers, concatenated and fed to an encoder-decoder ar-
chitecture based on ResNet34 (He et al., 2016). We
employ the Gaussian model (2) by duplicating the final
layer, outputting both µ ∈ Rh×w and log σ2 ∈ Rh×w
instead of only the predicted depth map ŷ ∈ Rh×w.
We also employ the same basic training procedure
as Ma et al. (2019) to train all our models, see Ap-
pendix C.1 for details. For the MC-dropout compari-
son, we take inspiration from Kendall et al. (2017) and
place a dropout layer with p = 0.5 after the three last
encoder blocks and the four first decoder blocks.

Evaluation Metrics We evaluate the methods in
terms of the Area Under the Sparsification Error curve
(AUSE) metric, as introduced by Ilg et al. (2018).
AUSE is a relative measure of the uncertainty estima-
tion quality, comparing the ordering of predictions in-
duced by the estimated predictive uncertainty (sorted
from least to most uncertain) with the “oracle” order-
ing in terms of the true prediction error. We compute
AUSE in terms of Root Mean Squared Error (RMSE)
and based on all pixels in the entire evaluation dataset.
A perfect AUSE score can be achieved even if the
true predictive uncertainty is consistently underesti-
mated. As an absolute measure of uncertainty esti-
mation quality, we therefor also evaluate the methods
in terms of calibration (Bröcker, 2009; Vaicenavicius
et al., 2019). Since our models output the mean µ ∈ R
and variance σ2 ∈ R of a Gaussian distribution for each
pixel, we can construct pixel-wise prediction intervals
µ±Φ−1(p+1

2 )σ of confidence level p ∈]0, 1[, where Φ is
the CDF of the standard normal distribution. When

computing the proportion of pixels for which the pre-
diction interval covers the true target y ∈ R, we expect
this value, denoted p̂, to equal p ∈]0, 1[ for a perfectly
calibrated model. We compute the absolute error with
respect to perfect calibration, |p− p̂|, for 100 values of
p ∈]0, 1[ and use the area under this curve as our met-
ric, which we call Area Under the Calibration Error
curve (AUCE). We also evaluate in terms of RMSE.

Results A comparison of ensembling and MC-
dropout in terms of AUSE, AUCE and RMSE on the
KITTI depth completion validation dataset is found
in Figure 5. We observe in Figure 5a that ensem-
bling consistently outperforms MC-dropout in terms
of AUSE. However, the curves decrease as a function of
M in a similar manner. Sparsification plots and spar-
sification error curves are found in Appendix C.3. A
ranking of the methods can be more readily conducted
based on Figure 5b, where we observe a clearly im-
proving trend as M increases for ensembling, whereas
MC-dropout gets progressively worse. This result is
qualitatively supported by the calibration plots found
in Appendix C.3. Note that M = 1 corresponds to the
baseline of only estimating aleatoric uncertainty.

4.3 Street-Scene Semantic Segmentation

In this task, we are given an image x ∈ Rh×w×3 from
a forward-facing camera. The goal is to predict y of
size h×w, in which each pixel is assigned to one of C
different class labels (road, sidewalk, car, etc.). We
utilize the popular Cityscapes (Cordts et al., 2016)
and recent Synscapes (Wrenninge and Unger, 2018)
datasets. Cityscapes contains 5 000 finely annotated
images, mainly collected in various German cities. The
annotations includes 30 class labels, but only C = 19
are used in the training of models. Its validation set
contains 500 examples, which we use for evaluation.
Synscapes contains 25 000 synthetic images, all cap-
tured in virtual urban environments. To match the
size of Cityscapes, we randomly select 2 975 of these
for training and 500 for validation. The images are an-
notated with the same class labels as Cityscapes. We

Discussion & conclusion

▶ Required training scales linearly with M for ensembling, but this is not a major
concern in most safety-critical applications, such as automotive. The main
drawback of both methods is instead the computational cost at test time that
scales linearly with M, affecting real-time applicability.

▶ Our work suggests that ensembling should be considered the new go-to method
for scalable epistemic uncertainty estimation. We attribute its success to the
ability to capture multi-modality in the posterior distribution p(θ|D).
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