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Energy-Based Models for Deep Probabilistic Regression

We achieve state-of-the-art regression performance on four diverse tasks by employing

energy-based models (EBMs) within a probabilistic formulation. Our proposed

approach is conceptually simple and straightforward to both implement and train.
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1. Background: Regression using Deep Neural Networks

Supervised Regression: learn to predict a continuous target value y? ∈
Y = RK from a corresponding input x? ∈ X , given a training set D of i.i.d.

input-target examples, D = {(xi , yi )}Ni=1, (xi , yi ) ∼ p(x , y).

Deep Neural Network (DNN): a function fθ : U → O, parameterized by

θ ∈ RP , that maps an input u ∈ U to an output fθ(u) ∈ O.

3/21



1. Background: Regression using Deep Neural Networks

Supervised Regression: learn to predict a continuous target value y? ∈
Y = RK from a corresponding input x? ∈ X , given a training set D of i.i.d.

input-target examples, D = {(xi , yi )}Ni=1, (xi , yi ) ∼ p(x , y).

Deep Neural Network (DNN): a function fθ : U → O, parameterized by

θ ∈ RP , that maps an input u ∈ U to an output fθ(u) ∈ O.

3/21



1.1 Direct Regression

Direct Regression: train a DNN fθ : X → Y to directly predict the target, y?= fθ(x?).

The DNN model parameters θ are learned by minimizing a loss function `(fθ(xi ), yi ),

penalizing discrepancy between the prediction fθ(xi ) and the ground truth yi :

J(θ) =
1

N

N∑
i=1

`(fθ(xi ), yi ), θ = argmin
θ′

J(θ′).

The most common choices for ` are the L2 loss, `(ŷ , y) = ‖ŷ − y‖2
2, and the L1 loss.

Minimizing J(θ) then corresponds to minimizing the negative log-likelihood∑N
i=1− log p(yi |xi ; θ) for a specific model p(y |x ; θ) of the conditional target density.

For example, the L2 loss corresponds to a fixed-variance Gaussian model (1D case):

p(y |x ; θ) = N (y ; fθ(x), σ2).
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1.2 Probabilistic Regression

Why not explicitly employ this probabilistic perspective and try to create more flexible

models p(y |x ; θ) of the conditional target density p(y |x)?

Probabilistic Regression: train a DNN fθ : X → O to predict the parameters φ of a

certain family of probability distributions p(y ;φ), then model p(y |x) with:

p(y |x ; θ) = p(y ;φ(x)), φ(x) = fθ(x).

The DNN model parameters θ are learned by minimizing
∑N

i=1− log p(yi |xi ; θ).

For example, a general 1D Gaussian model can be realized as:

p(y |x ; θ) = N
(
y ;µθ(x), σ2

θ(x)
)
, fθ(x) = [µθ(x) log σ2

θ(x) ]T ∈ R2.

The negative log-likelihood
∑N

i=1− log p(yi |xi ; θ) then corresponds to the loss:

J(θ) =
1

N

N∑
i=1

(yi − µθ(xi ))2

σ2
θ(xi )

+ log σ2
θ(xi ).
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1.3 Confidence-Based Regression

The quest for improved regression accuracy has also led to the development of more

specialized methods, achieving state-of-the-art performance within computer vision.

Confidence-Based Regression: train a DNN fθ : X × Y → R to predict a scalar

confidence value fθ(x , y), and maximize this quantity w.r.t. y to predict the target:

y? = argmax
y

fθ(x?, y)

The DNN model parameters θ are learned by generating pseudo ground truth

confidence values c(xi , yi , y), and minimizing a loss function `
(
fθ(xi , y), c(xi , yi , y)

)
.

Commonly employed for image-coordinate regression, e.g. human pose estimation [15],

where the DNN predicts a 2D confidence heatmap over image-coordinates y . Recently,

the approach was also employed by IoU-Net [7] for bounding box regression in object

detection, which in turn was utilized by the ATOM [4] visual tracker.
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2. Proposed Regression Method

While confidence-based regression methods have demonstrated impressive results,

they require important task-dependent design choices (e.g. how to generate the

pseudo ground truth labels) and usually lack a clear probabilistic interpretation.

In

contrast, the framework of probabilistic regression is straightforward and generally

applicable, but can usually not compete in terms of regression accuracy.

In this work, we aim to combine the benefits of these two approaches.

EBMs for Deep Probabilistic Regression: train a DNN fθ : X × Y → R to

predict a scalar value fθ(x , y), then model p(y |x) with the EBM:

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .

The DNN model parameters θ are learned by minimizing
∑N

i=1− log p(yi |xi ; θ).
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2.1 Training

EBMs for Deep Probabilistic Regression:

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .

The DNN model parameters θ are learned by minimizing
∑N

i=1− log p(yi |xi ; θ).

Training thus requires the evaluation of Z (x , θ), we employ importance sampling:

− log p(yi |xi ; θ) = log

(∫
efθ(xi ,y)dy

)
− fθ(xi , yi )

= log

(∫
efθ(xi ,y)

q(y)
q(y)dy

)
− fθ(xi , yi )

≈ log

(
1

M

M∑
k=1

efθ(xi ,y
(k))

q(y (k))

)
− fθ(xi , yi ), y (k) ∼ q(y).
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The DNN model parameters θ are learned by minimizing
∑N

i=1− log p(yi |xi ; θ).

Training thus requires the evaluation of Z (x , θ), we employ importance sampling:

− log p(yi |xi ; θ) = log

(∫
efθ(xi ,y)dy

)
− fθ(xi , yi )

= log

(∫
efθ(xi ,y)

q(y)
q(y)dy

)
− fθ(xi , yi )

≈ log

(
1

M

M∑
k=1

efθ(xi ,y
(k))

q(y (k))

)
− fθ(xi , yi ), y (k) ∼ q(y).

9/21



2.1 Training

EBMs for Deep Probabilistic Regression:

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .
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2.1 Training - Illustrative 1D Regression Problem

Our EBM p(y |x ; θ) = efθ(x ,y)/Z (x , θ) is highly flexible and can learn complex target

densities directly from data, including multi-modal and asymmetric densities.

Figure 2: An illustrative 1D regression problem. The training data {(xi , yi )}2000
i=1 is generated

by the ground truth conditional target density p(y |x).
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2.2 Prediction

EBMs for Deep Probabilistic Regression: train a DNN fθ : X × Y → R to

predict a scalar value fθ(x , y), then model p(y |x) with the EBM:

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .

Given an input x? at test time, we predict the target y? by maximizing p(y |x?; θ):

y? = argmax
y

p(y |x?; θ) = argmax
y

fθ(x?, y).

By designing the DNN fθ to be differentiable w.r.t. targets y , the gradient ∇y fθ(x?, y)

can be efficiently evaluated using auto-differentiation. We can thus perform gradient

ascent to find a local maximum of fθ(x?, y), starting from an initial estimate ŷ .
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12/21



2.2 Prediction

EBMs for Deep Probabilistic Regression:

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .
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3. Experiments

We evaluate our proposed approach on four diverse computer vision regression tasks:

object detection, visual tracking, age estimation and head-pose estimation.

Our approach significantly outperforms the state-of-the-art confidence-based

IoU-Net [7] method for bounding box regression in direct comparisons, both when

applied for object detection on COCO [10], and in the ATOM [4] visual tracker.

In contrast to confidence-based methods, our approach is shown to also be directly

applicable to more general tasks such as age and head-pose estimation.
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3.1 Object Detection

Object Detection: when applied to refine the Faster-RCNN detections on COCO, our

approach both significantly improves the original detections and outperforms IoU-Net.

Formulation Direct Gaussian Gaussian Gaussian Gaussian Gaussian Laplace Confidence Confidence

Approach Faster-RCNN [9] Mixt. 2 Mixt. 4 Mixt. 8 cVAE IoU-Net [7] IoU-Net∗ Ours

AP (%) 37.2 36.7 37.1 37.0 36.8 37.2 37.1 38.3 38.2 39.4

AP50(%) 59.2 58.7 59.1 59.1 59.1 59.2 59.1 58.3 58.4 58.6

AP75(%) 40.3 39.6 40.0 39.9 39.7 40.0 40.2 41.4 41.4 42.1

FPS 12.2 12.2 12.2 12.1 12.1 9.6 12.2 5.3 5.3 5.3
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3.2 Visual Tracking

Visual Tracking: when applied to refine the initial estimate provided by the classifier

in ATOM, our approach significantly outperforms the original IoU-Net-based method.

Our approach also outperforms other state-of-the-art trackers.

Dataset Metric ECO SiamFC MDNet UPDT DaSiamRPN SiamRPN++ ATOM ATOM∗ Ours

[5] [1] [13] [2] [17] [8] [4]

TrackingNet [12] Precision (%) 49.2 53.3 56.5 55.7 59.1 69.4 64.8 66.6 69.7

Norm. Prec. (%) 61.8 66.6 70.5 70.2 73.3 80.0 77.1 78.4 80.1

Success (%) 55.4 57.1 60.6 61.1 63.8 73.3 70.3 72.0 74.5

UAV123 [11] OP0.50 (%) 64.0 - - 66.8 73.6 75† 78.9 79.0 80.8

OP0.75 (%) 32.8 - - 32.9 41.1 56† 55.7 56.5 60.2

AUC (%) 53.7 - 52.8 55.0 58.4 61.3 65.0 64.9 67.2
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3.3 Age & Head-Pose Estimation

Age Estimation: refinement using our proposed method consistently improves MAE

(lower is better) for the age predictions outputted by a number of baselines.

+Refine Niu et al. [14] Cao et al. [3] Direct Gaussian Laplace Softmax (CE, L2) Softmax (CE, L2, Var)

5.74 ± 0.05 5.47 ± 0.01 4.81 ± 0.02 4.79 ± 0.06 4.85 ± 0.04 4.78 ± 0.05 4.81 ± 0.03

X - - 4.65 ± 0.02 4.66 ± 0.04 4.81 ± 0.04 4.65 ± 0.04 4.69 ± 0.03

Head-Pose Estimation: refinement using our method consistently improves the

average MAE for yaw, pitch and roll for the predicted pose outputted by our baselines.

+Refine Gu et al. [6] Yang et al. [16] Direct Gaussian Laplace Softmax (CE, L2) Softmax (CE, L2, Var)

3.66 3.60 3.09 ± 0.07 3.12 ± 0.08 3.21 ± 0.06 3.04 ± 0.08 3.15 ± 0.07

X - - 3.07 ± 0.07 3.11 ± 0.07 3.19 ± 0.06 3.01 ± 0.07 3.11 ± 0.06
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