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About the Presentation

I’m a postdoc in the group of Mattias Rantalainen at Karolinska Institutet

(Department of Medical Epidemiology and Biostatistics), since December 2023.

Will give a snapshot of some ongoing work in the group, focusing on how we train and

evaluate computational pathology foundation models on in-house breast cancer data.

Rantalainen Group:

Mattias Rantalainen.

Constance Boissin, Kajsa Ledesma Eriksson, Bojing Liu, Francisco J. Peña, Abhinav

Sharma, Erik Thiringer, Duong Tran, Yujie Xiang, Anne-May Österholm.
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Computational Pathology

Computational pathology uses machine learning and computer vision to automatically

extract useful information from histopathology whole-slide images (WSIs).

Given datasets of (WSI, label) pairs, models can be trained for applications such as

histological grading, patient outcome prediction, and prediction of various biomarkers.
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Computational Pathology

Computational pathology uses machine learning and computer vision to automatically

extract useful information from histopathology whole-slide images (WSIs).

Given datasets of (WSI, label) pairs, models can be trained for applications such as

histological grading, patient outcome prediction, and prediction of various biomarkers.
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Foundation Models

Foundation models are large models trained on large amounts of unlabeled data using

self-supervised learning. They are intended to be general-purpose feature extractors.

Self-supervised learning enables models to be trained on “raw” unlabeled data. Large

collections of unlabeled WSIs – WSIs without known clinical info, patient outcomes or

any other type of annotations – can thus be directly utilized in model training.

Has recently become a popular research direction within computational pathology:

UNI: Towards a General-Purpose Foundation Model for Computational Pathology

Nature Medicine, 2024

Prov-GigaPath: A Whole-Slide Foundation Model for Digital Pathology from Real-World Data

Nature, 2024

Virchow: A Foundation Model for Clinical-Grade Computational Pathology and Rare Cancers Detection

Nature Medicine, 2024

.

.

. 3/12



Computational Pathology (CPATH) Foundation Models

Details for two recent computational pathology (CPATH) foundation models:

UNI:

• Pretrained using self-supervised learning (DINOv2) on a pan-cancer dataset (20

major tissue types) of 100 million tissue patches from more than 100,000 WSIs.

• Most WSIs are collected from the Massachusetts General Hospital and Brigham

and Women’s Hospital in Boston, USA.

• Vision transformer ViT-Large model, 303 million parameters.

Virchow:

• Pretrained using self-supervised learning (DINOv2) on a pan-cancer dataset (17

major tissue types) of 2 billion patches from more than 1.4 million WSIs.

• WSIs are collected from the Memorial Sloan Kettering Cancer Center (New York,

USA), from more than 119,000 patients.

• ViT-Huge model, 632 million parameters.
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Using CPATH Foundation Models

Typical workflow:

• Tissue-segment each WSI and divide it into image patches (e.g. 224× 224 pixels).

• Use a frozen foundation model to extract feature vectors for all images patches in

each WSI (typical range: 5,000 - 25,000 image patches per WSI ).

• Train a small model that, for each WSI, takes the extracted patch-level feature

vectors as input and outputs a WSI-level prediction (standard supervised training).
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Training CPATH Foundation Models for Breast Cancer

Observation:

In various downstream breast cancer-related tasks, CPATH foundation models trained

on pan-cancer histopathology image data (e.g. UNI & Virchow) significantly

outperform regular foundation models trained on natural images.

Hypothesis:

In various downstream breast cancer-related tasks, tissue-specific foundation models

trained on breast-specific histopathology image data will outperform pan-cancer

CPATH foundation models (e.g. UNI & Virchow).

Approach:

Train ViT model using DINOv2 on an in-house dataset of more than 60,000 WSIs from

Swedish breast cancer patients, compare with UNI and other pan-cancer models.
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Training CPATH Foundation Models for Breast Cancer - Details

Dataset details:

• More than 60,000 WSIs, 100 TB of data in total.

• More than 1.1 billion 224× 224 image patches after preprocessing.

• Data from six different sites, 80% of WSIs are from Kalmar, Örebro or Jönköping.

• Only H&E-stained WSIs (future work: Utilize the IHC-stained WSIs as well).

• All WSIs have been digitized/scanned in-house.

First approach: Randomly sample 1,000 tissue patches per WSI to create the final

training dataset, resulting in more than 60 million image patches (800 GB of data).

Initial experiments are ongoing, training ViT-Large and ViT-Base models.
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Evaluating CPATH Foundation Models for Breast Cancer (1/3)

Two examples of tasks we are benchmarking public CPATH foundation models on:

Benchmarking task 1: Gene-expression prediction.

Using the public TCGA-BRCA dataset, containing WSIs and corresponding

gene-expression labels of 20,000 genes for more than 1,000 patients. Train model to

predict all 20,000 genes, evaluate on subset of 50 breast cancer-related genes (PAM50).

Table S5. Results on the TCGA-BRCA dataset, when models are evaluated only on a subset of 50 genes (PAM50) with demonstrated
prognostic value for breast cancer [20, 30]. All results are mean±std over the 5 cross-validation folds, bold marks the best mean value.

mean Pearson (↑)
UNI - Direct - ABMIL 0.562±0.020
UNI - Direct - Patch-Level 0.541±0.015
UNI - Contrastive 0.564±0.020
UNI - kNN 0.415±0.019

Resnet-IN - Direct - ABMIL 0.373±0.070
Resnet-IN - Direct - Patch-Level 0.306±0.028
Resnet-IN - Contrastive 0.449±0.046
Resnet-IN - kNN 0.267±0.026

UNI - Direct - ABMIL - Trained only on PAM50, 1 model 0.576±0.020
UNI - Direct - ABMIL - Trained only on PAM50, 2 models 0.575±0.021
UNI - Direct - ABMIL - Trained only on PAM50, 5 models 0.572±0.012
UNI - Direct - ABMIL - Trained only on PAM50, 10 models 0.569±0.016
UNI - Direct - ABMIL - Trained only on PAM50, 25 models 0.566±0.019
UNI - Direct - ABMIL - Trained only on PAM50, 50 models 0.560±0.020

Table S6. Text text text.......

Rank Model name PAM50 mean Pearson (↑)
1 H-optimus-1 0.595±0.016
2 H0-mini 0.591±0.014
3 H-optimus-0 0.587±0.012
4 UNI2-h 0.583±0.016
5 Virchow2 0.582±0.019
6 CONCHv1.5 0.576±0.021
7 CONCH 0.574±0.019
8 Prov-GigaPath 0.571±0.009
9 Virchow 0.563±0.020
10 UNI 0.562±0.026
11 CTransPath 0.517±0.029
12 RetCCL 0.449±0.034
13 Resnet-IN 0.379±0.034

Table S7. Top 20 genes (out of the N = 20 530 total number of genes) with the highest regression accuracy for UNI - Direct - ABMIL,
across the four TCGA datasets. All results are mean±std over the 5 cross-validation folds, sorted according to the highest mean value.

TCGA-BRCA TCGA-HNSC TCGA-STAD TCGA-BLCA
Rank Gene Pearson (↑) Rank Gene Pearson (↑) Rank Gene Pearson (↑) Rank Gene Pearson (↑)
1 FOXA1 0.731±0.027 1 SGEF 0.742±0.037 1 PKNOX2 0.633±0.030 1 UPK2 0.699±0.059
2 MLPH 0.726±0.048 2 LOC730101 0.726±0.055 2 JAM2 0.620±0.038 2 WARS 0.696±0.068
3 TBC1D9 0.721±0.021 3 GLS2 0.725±0.051 3 C1QTNF7 0.617±0.056 3 TOX3 0.679±0.068
4 AGR3 0.720±0.023 4 MAP7D1 0.698±0.056 4 SCN4B 0.612±0.069 4 TAP2 0.676±0.082
5 THSD4 0.713±0.023 5 KIAA1609 0.692±0.038 5 FCER1A 0.601±0.082 5 KSR2 0.670±0.070
6 CCNE1 0.711±0.032 6 ACPL2 0.691±0.025 6 CNRIP1 0.600±0.079 6 KRT6B 0.670±0.061
7 ESR1 0.709±0.018 7 MYB 0.691±0.067 7 TPX2 0.597±0.123 7 DUSP7 0.669±0.075
8 XBP1 0.701±0.025 8 C3orf58 0.687±0.016 8 DNMT3B 0.597±0.098 8 TYMP 0.667±0.054
9 ORC6L 0.701±0.035 9 KRT14 0.686±0.034 9 BHMT2 0.593±0.031 9 TRAK1 0.665±0.088
10 CENPA 0.701±0.037 10 RGS20 0.685±0.086 10 MAPK10 0.593±0.058 10 SLC30A2 0.662±0.064
11 GATA3 0.700±0.045 11 THSD1 0.684±0.035 11 GYPC 0.593±0.097 11 KRT6C 0.662±0.053
12 DNALI1 0.693±0.015 12 TUBB6 0.681±0.062 12 FHL1 0.591±0.055 12 C17orf28 0.661±0.076
13 CDC25A 0.692±0.034 13 MYO3A 0.677±0.070 13 GSTM5 0.590±0.065 13 LILRA6 0.658±0.063
14 NOSTRIN 0.691±0.045 14 MT2A 0.671±0.058 14 TCEAL7 0.588±0.116 14 PDCD1LG2 0.657±0.040
15 SCUBE2 0.690±0.014 15 SLC31A2 0.670±0.059 15 ABCA8 0.584±0.043 15 KLHDC7A 0.654±0.082
16 SPDEF 0.690±0.043 16 MRAP2 0.668±0.027 16 FAM107A 0.581±0.059 16 SLC9A2 0.653±0.069
17 PSAT1 0.688±0.027 17 SP110 0.665±0.051 17 FXYD1 0.580±0.114 17 BHMT 0.649±0.058
18 CENPN 0.688±0.027 18 TMEM116 0.662±0.050 18 HJURP 0.579±0.092 18 FAM190A 0.647±0.037
19 C6orf97 0.687±0.034 19 SAMD12 0.661±0.023 19 FGF7 0.577±0.097 19 LOC100188947 0.647±0.083
20 SLC44A4 0.686±0.035 20 CAV1 0.661±0.044 20 TOP2A 0.577±0.117 20 FCGR3A 0.645±0.049
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Evaluating CPATH Foundation Models for Breast Cancer (2/3)

Benchmarking task 2: Survival prediction.

Using in-house datasets with WSIs and corresponding patient outcomes (overall

survival + recurrence events) for Swedish breast cancer patients from 3 different sites.

• Training: 2,300 patients, mean follow-up time of 7.5 years, 350 events.

• Evaluation: 3,100 patients, mean follow-up time of 7.6 years, 510 events.

Table S5. Results on the TCGA-BRCA dataset, when models are evaluated only on a subset of 50 genes (PAM50) with demonstrated
prognostic value for breast cancer [20, 30]. All results are mean±std over the 5 cross-validation folds, bold marks the best mean value.

mean Pearson (↑)
UNI - Direct - ABMIL 0.562±0.020
UNI - Direct - Patch-Level 0.541±0.015
UNI - Contrastive 0.564±0.020
UNI - kNN 0.415±0.019

Resnet-IN - Direct - ABMIL 0.373±0.070
Resnet-IN - Direct - Patch-Level 0.306±0.028
Resnet-IN - Contrastive 0.449±0.046
Resnet-IN - kNN 0.267±0.026

UNI - Direct - ABMIL - Trained only on PAM50, 1 model 0.576±0.020
UNI - Direct - ABMIL - Trained only on PAM50, 2 models 0.575±0.021
UNI - Direct - ABMIL - Trained only on PAM50, 5 models 0.572±0.012
UNI - Direct - ABMIL - Trained only on PAM50, 10 models 0.569±0.016
UNI - Direct - ABMIL - Trained only on PAM50, 25 models 0.566±0.019
UNI - Direct - ABMIL - Trained only on PAM50, 50 models 0.560±0.020

Table S6. Text text text.......

Rank Model name C-index (↑)
1 H0-mini 0.689±0.012
2 H-optimus-1 0.687±0.012
3 Virchow2 0.682±0.012
4 H-optimus-0 0.677±0.012
4 UNI2-h 0.677±0.012
6 CONCH 0.675±0.012
7 Prov-GigaPath 0.674±0.012
8 CONCHv1.5 0.672±0.012
9 Virchow 0.671±0.013
10 UNI 0.666±0.012
11 RetCCL 0.659±0.012
12 CTransPath 0.648±0.013
13 Resnet-IN 0.633±0.013
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Evaluating CPATH Foundation Models for Breast Cancer (2/3)

Benchmarking task 2: Survival prediction.

Using in-house datasets with WSIs and corresponding patient outcomes (overall

survival + recurrence events) for Swedish breast cancer patients from 3 different sites.

• Training: 2,300 patients, mean follow-up time of 7.5 years, 350 events.

• Evaluation: 3,100 patients, mean follow-up time of 7.6 years, 510 events.

Table S5. Results on the TCGA-BRCA dataset, when models are evaluated only on a subset of 50 genes (PAM50) with demonstrated
prognostic value for breast cancer [20, 30]. All results are mean±std over the 5 cross-validation folds, bold marks the best mean value.

mean Pearson (↑)
UNI - Direct - ABMIL 0.562±0.020
UNI - Direct - Patch-Level 0.541±0.015
UNI - Contrastive 0.564±0.020
UNI - kNN 0.415±0.019

Resnet-IN - Direct - ABMIL 0.373±0.070
Resnet-IN - Direct - Patch-Level 0.306±0.028
Resnet-IN - Contrastive 0.449±0.046
Resnet-IN - kNN 0.267±0.026

UNI - Direct - ABMIL - Trained only on PAM50, 1 model 0.576±0.020
UNI - Direct - ABMIL - Trained only on PAM50, 2 models 0.575±0.021
UNI - Direct - ABMIL - Trained only on PAM50, 5 models 0.572±0.012
UNI - Direct - ABMIL - Trained only on PAM50, 10 models 0.569±0.016
UNI - Direct - ABMIL - Trained only on PAM50, 25 models 0.566±0.019
UNI - Direct - ABMIL - Trained only on PAM50, 50 models 0.560±0.020

Table S6. Text text text.......

Rank Model name C-index (↑)
1 H0-mini 0.689±0.012
2 H-optimus-1 0.687±0.012
3 Virchow2 0.682±0.012
4 H-optimus-0 0.677±0.012
4 UNI2-h 0.677±0.012
6 CONCH 0.675±0.012
7 Prov-GigaPath 0.674±0.012
8 CONCHv1.5 0.672±0.012
9 Virchow 0.671±0.013
10 UNI 0.666±0.012
11 RetCCL 0.659±0.012
12 CTransPath 0.648±0.013
13 Resnet-IN 0.633±0.013
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Evaluating CPATH Foundation Models for Breast Cancer (3/3)

We are also evaluating scanner-variability robustness of CPATH foundation models,

using an in-house dataset of WSIs digitized/scanned with five different scanners.
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Main Takeaways

(1/4) We are training foundation models specifially for breast cancer using an in-house

dataset of more than 60,000 WSIs from Swedish breast cancer patients.

(2/4) Our hypothesis is that such tissue-specific foundation models will outperform

current pan-cancer models in important breast cancer-related CPATH applications.

(3/4) Being able to train in-house foundation models also enables the group to explore

strategies for improved model robustness (different scanners, labs & hospitals), train

models for IHC-stained WSIs, develop new self-supervised learning methods tailored for

pathology data, study how performance scales with the model and dataset size, etc.

(4/4) Our in-house foundation models will serve as the backbone for various breast

cancer precision diagnostics solutions developed by the group moving forward.
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